English  
姓名: 鲁祯
性别:
英文名: luzhen
人才称号: 天津大学“北洋学者青年骨干”教师
职称: 副教授
职务: 专业: 动力机械及工程
所在机构: 先进内燃动力全国重点实验室 个人主页:
邮箱: luzhen@tju.edu.cn 办公地点: 热动力大楼
传真: 办公电话: 15022608340
主要学历: 2002/09 至 2006/07 本科 西南交通大学 热能与动力工程
2008/09 至 2010/07 硕士 天津大学 动力机械及工程
2010/09 至 2014/07 博士 天津大学 动力机械及工程


主要学术经历: 1. 2016 - 至今, 内燃机燃烧学国家重点实验室,天津大学,副教授
2. 2014 - 2016,机械工程学院, 天津大学,博士后
3. 2006 - 2008,长城汽车股份有限公司,工程师


主要研究方向: 1. 内燃动力高效清洁燃烧技术的前沿基础研究
2. 内燃机缸内气流运动及混合气形成研究
3. 低速二冲程船机低碳零碳燃料的清洁燃烧技术研究

主要讲授课程: 《机械工程训练基础》、《设计与建造》

主要学术兼职: 设计与智能制造分会副秘书长

主要学术成就: 1. 中国机械工业科学技术一等奖(第3完成人)
2. 天津市技术发明一等奖(第3完成人)
3. 第十六届中国专利优秀奖
4. 第十四届中国专利优秀奖
5. 天津市专利优秀奖

主要科研项目: 1.国家自然科学基金(面上项目):低速二冲程船用柴油机高效清洁燃烧关键技术研究[51976133],2020.01-2023.12,57万元,主持,在研
2.人才团队-北洋骨干计划:低速二冲程船用柴油机扫气流动特性及其对燃烧和排放的影响规律研究,2018.01-2019.12,10万元,主持,结题
3.国家自然科学基金(青年项目):二冲程船用柴油机缸内湍流特性及其对EGR分布影响规律研究[51506142],2016.01-2018.12,24万元,主持,结题
4.企业横向项目:发动机缸头气道试验台,2022.06.25-2023.06.24,主持,在研
5.企业横向项目:一致性滚流气道开发项目技术服务,2021.05-2023.05,主持,在研
6.企业横向项目:气道试验台利旧自动化升级,2021.03.22-2022.03.23,主持,结题
7.企业横向项目:稳流吹风试验台技术服务,2020.12.10-2021.01.09,主持,结题
8.企业横向项目:缸径**柴油机及缸径**柴油机气道设计技术开发,2019.09.02-2021.12.30,主持,结题
9.企业横向项目:流量背压试验台技术开发 ,2021.01.01-2021.08.01,主持,结题
10.企业横向项目:*****进气道系统设计,,2020.08.31-2020.12.31,主持,结题
11.企业横向项目:内燃机气道正向设计开发预研,2017.01-2018.01,主持,结题
12.企业横向项目:气道正向3D设计技术及测试系统开发,2016.01-2019.01,主持,结题
13.企业横向项目:****柴油机进气道优化技术开发,2014.12-2015.12,主持,结题

代表性论著: (1)Lu Z, Ye J, Gui Y, Lu T, Shi L, An Y, et al. Numerical study of the compression ignition of ammonia in a two-stroke marine engine by using HTCGR strategy. Energy 2023;276.
(2)Zhang H, Lu Z, Wang T, Che Z. Mist formation during micro-explosion of emulsion droplets. Fuel 2023;339.
(3)Feng Y, Sun K, Li Y, Bai H, Shi L, Lu Z, et al. The critical role of swirl in high-specific-output diesel engines. Fuel 2023;341.
(4)Lu T, Lu Z*, Gao Y, Shi L, Wang H, Wang T. Investigation on suitable swirl ratio and spray angle of a large-bore marine diesel engine using genetic algorithm. Fuel 2023;345.
(5)Wang H, Wang T, Jia M, Lu Z, Chang Y, Sun K. Development of a reduced chemical kinetic mechanism for ammonia combustion using species-based global sensitivity analysis. Fuel 2023;344.
(6)Lu Z, Ma M, Wang T*, Lu T, Wang H, Feng Y, et al. Numerical research of the in-cylinder natural gas stratification in a natural gas-diesel dual-fuel marine engine. Fuel 2022.
(7)Lu Z, Lu T, Shi L, Wang T*, Wang H, Liu M. An efficient approach to improve thermal efficiency on a low-speed two-stroke marine diesel engine. Fuel 2022; 329.
(8)Wang H, Wang T, Feng Y, Lu Z, Sun K. Synergistic effect of swirl flow and prechamber jet on the combustion of a natural gas-diesel dual-fuel marine engine. Fuel 2022;325.
(9)Hao C, Zhang ZZ, Wang ZG, Lu Z*. Investigation of spray angle and combustion chamber geometry to improve combustion performance at full load on a heavy-duty diesel engine using genetic algorithm. Energy Conversion and Management 267(3):115862, September 2022.
(10)Gao Y, Lu Z*, Wang T, Shi L, Feng Y, Lu T. The Full-Parametric Development of the Intake Ports by Using Genetic Algorithm in a Four-Valve Diesel Engine. Part D: Journal of Automobile Engineering 2022.
(11)Lu Z, Liu M, Shi L, Wang T, Lu T, Wang H*. Numerical research of the injected exhaust gas recirculation strategy on a two-stroke low-speed marine diesel engine. Energy: 2021.
(12)Lu T, Lu Z*, Shi L, Wang T, Liu M, Wang H. Improving the fuel/air mixing and combustion process in a low-speed two-stroke engine by the IFA strategy under EGR atmosphere. Fuel 2021:302: 121200.
(13)Hao C, Lu Z*, Feng Y, et al. Optimization of Fuel/Air Mixing and Combustion Process in a Heavy-duty Diesel Engine Using Fuel Split Device[J]. Applied Thermal Engineering, 2020: 116458.
(14)Cai J, Sun K, Feng Y, Jia M, Lu Z, et al. Turbulent jet ignition of ultra-lean methane/air mixture under engine-like condition. Physics of Fluids 2021; 33(11).
(15)Sun Y, Wang T, Wen M, Lu Z*. Prediction of the in-piston-bowl swirl ratio of diesel engines[J]. Proceedings of the Institution of Mechanical Engineers Part D Journal of Automobile Engineering, 2018.
(16)Cao Z, Wang T, Sun K, Cui L, Lu Z*. Numerical Analysis of Scavenging Process in a Large Marine Two-stroke Diesel Engine [R]. SAE Technical Paper, 2017-01-2201.
(17)Wang C, Wang T*, Sun K, Lu Z, et al. Effects of EGR and Injection Strategies on the Performance and Emissions of a Two-Stroke Marine Diesel Engine [J]. SAE Technical Paper, 2017-01-2249.
(18)Sun, Y., Sun, K., Lu, Z., Wang, T. Jia, M. Selection of Swirl Ratio in Diesel Engines Based on Droplet Trajectory Analysis. SAE Technical Paper 2017-01-0813.
(19)Cui, L, Wang, T, Sun, K, Lu, Z, Che, Z, Sun, Y. Numerical Analysis of the Steady-State Scavenging Flow Characteristics of a Two-Stroke Marine Engine. SAE Technical Paper 2017-01-0558.
(20)Cui L, Jia M, Sun Y, Wang T, Lu Z*. Full-Parameter Approach for the Intake Port Design of a Four-Valve Direct-Injection Gasoline Engine. Journal of Engineering for Gas Turbines & Power, 2015, 137(9).
(21)Lu Z, Wang T*, Liu S, Lin Z, Han Y. Experimental and Modeling Study of the Effect of Manufacturing Deviations on the Flow Characteristics of Tangential Intake Port in a Diesel Engine. Journal of Engineering for Gas Turbines & Power, 2014, 136(11).
(22)Lu Z, Wang T*, Li X, Li L, Zhang G, Parametric design of the tangential intake port in diesel engines. Proceedings of the Institution of Mechanical Engineers Part D Journal of Automobile Engineering, 2013, 227(3): 409-421.

院长信箱 | 党委书记信箱 | 相关链接 | 联系我们 | 法律声明
© 2018-2019 机械工程学院 版权所有 [技术支持]天津市天深科技股份有限公司