English  
姓名: 张茜
性别:
英文名: Zhang Qian
人才称号: 国家优秀青年基金、天津市青年托举人才
职称: 副教授
职务: 专业: 固体力学
所在机构: 机械工程学院力学系 个人主页: http://faculty.tju.edu.cn/Qian_Zhang/zh_CN/index.htm
邮箱: zhangqian@tju.edu.cn 办公地点: 第36教学楼(力学大楼)504室
传真: 办公电话:
主要学历: 2009.09~2012.06 天津大学机械学院固体力学专业 工学博士;
2007.09~2009.06 天津大学机械学院固体力学专业 工学硕士;
2003.09~2007.06 天津大学机械学院工程力学专业 工学学士;

主要学术经历: 2012.07~2014.04 天津大学机械学院机械系 博士后;
2014.05~2017.06 天津大学机械学院力学系 讲师/硕士生导师;
2017.07~至今 天津大学机械学院力学系 副教授/博士生导师;
2014.10~2015.04 澳大利亚国立大学工程与计算科学学院 访问学者;

主要研究方向: 实验力学大数据分析方法;力学与人工智能结合方法;大型工程装备智能制造与智能控制中的力学建模;深海环境多场耦合行为实验测试与表征

主要讲授课程: 《材料力学》、《工程力学》、《数据分析与数据挖掘》、《高等实验力学(全英文)》

主要学术兼职: 中国力学学会第十一届实验力学专业委员会“力学测试数据分析与表征”专业组副组长;天津市青年科技工作者协会委员;Viser出版社专家库机械工程专业委员会委员等

主要学术成就: 国家“优青”、天津市“青托”获得者;提出了掘进载荷力学解耦分析方法与总载荷预估新模型,支撑服务于我国首台独立知识产权隧道掘进装备自主研发,作为主要完成人获得天津市技术发明一等奖2项;相关研究成果已发表学术论文41篇,授权国家发明专利31项,获批软件著作权11项。

主要科研项目: [1]国家自然科学基金重大项目“先进材料力学性能的高分辨率观测方法和应用(11890683)”,子课题负责人;
[2]科技部重点研发计划“全断面隧道掘进装备运行服务平台及智能终端研制(2018YFB1702500)”, 子课题负责人;
[3]国家自然科学基金优秀青年基金项目“实验固体力学(12022205)”,项目负责人;
[4]国家自然科学基金面上项目“基于检测数据智能分析的力学建模与盾构载荷地质适应性研究(11872269)”,项目负责人;
[5]国家自然科学基金青年项目“海量工程数据反演识别方法与盾构装备载荷及掘进能效的力学建模(11302146)”,项目负责人;
[6]天津市自然科学基金面上项目“大数据驱动下的力学建模方法及TBM 装备载荷力学分析与识别表征(18JCYBJC19600)”,项目负责人;
[7]中国博士后科学基金面上项目“基于海量实测数据的反演分析方法与盾构载荷力学建模(2013M541172)”,项目负责人;
[8]国家“盾构及掘进技术”重点实验室开放基金“盾构在软土施工中的力学行为表征与载荷建模”,项目负责人;
[9]科技部973计划“硬岩刀盘系统动力学行为与设计理论(2013CB035402)”,骨干参加人;
[10]科技部973计划“复杂地质掘进过程的界面行为(2007CB714001)”,骨干参加人;
[11]科技部863计划“大直径硬岩隧道掘进装备关键技术研究及应用(2009AA04Z423)”,骨干参加人;
[12]科技部863计划“大型全断面掘进装备刀盘和刀具运行状态监测技术与预警系统(2012AA041801)”,骨干参加人;
[13]国家自然科学基金重大仪器专项(仪器类重点项目)“典型掘进装备关键部件寿命状态的力学诊断与检测仪器(11127202)”,骨干参加人;

代表性论著: [1]Xie Haimei, Kang Yilan, Song Haibin, Guo Jiangang*, Zhang Qian*. In situ method for stress measurements in film-substrate electrodes during electrochemical processes: key role of softening and stiffening,Acta Mechanica Sinica, 2020, 36(6) : 1319-1335.
[2]Liu Zihan, Kang Yilan, Song Haibin, Zhang Qian*, Xie Haimei*. Experimental investigation of electrode cycle performance and electrochemical kinetics performance under stress loading, Chinese Physics B, 2020, 30(1).
[3]Siyang Zhou, Xiangfeng Guo*, Qian Zhang*, Daniel Dias, Qiujing Pan, Influence of a weak layer on the tunnel face stability – Reliability and sensitivity analysis, Computers and Geotechnics, 2020,122:103507.
[4]Qian Zhang, Kaihong Yang, Lihui Wang, and Siyang Zhou*, Geological Type Recognition by Machine Learning on In-Situ Data of EPB Tunnel Boring Machines ,Mathematical Problems in Engineering ,2020, 2020:3057893.
[5]Wei Yang, Haimei Xie, Baoqin Shi, Haibin Song, Wei Qiu*, Qian Zhang*, In-situ experimental measurements of lithium concentration distribution and strain field of graphite electrodes during electrochemical process, Journal of Power Sources, 2019, 423:174–182.
[6]Haimei Xie, Yilan Kang, Haibin Song, Qian Zhang*, Real-time measurements and experimental analysis of material softening and total stresses of Si-composite electrode, Journal of Power Sources, 2019, 424:100–107.
[7]Siyang Zhou, Yilan Kang, Haimei Xie, Lihui Wang, Qian Zhang*, An approach integrating dimensional analysis and field data for predicting the load on tunneling machine, KSCE Journal of Civil Engineering, 2019, 4:1-8.
[8]Haimei Xie, Haibin Song, JianGang Guo, Yilan Kang*, Wei Yang, Qian Zhang*, In situ measurement of rate-dependent strain/stress evolution and mechanism exploration in graphene electrodes during electrochemical process, Carbon, 2019, 144:342–350.
[9]Haibin Song, Haimei Xie, Chaochen Xu, Yilan Kang, Chuanwei Li, Qian Zhang*, In Situ Measurement of Strain Evolution in the Graphene Electrode during Electrochemical Lithiation and Delithiation, The Journal of Physical Chemistry C, 2019, 123(31):18861–18869.
[10]Wenbo Dou, Chaochen Xu, Jiangang Guo, Hongzhi Du, Wei Qiu*, Tao Xue, Yilan Kang, Qian Zhang*, Interfacial mechanical properties of double-layer graphene with consideration of the effect of stacking mode, ACS Applied Materials & Interfaces, 2018, 10(51): 44941-44949.
[11]Baoqin Shi, Yilan Kang, Haimei Xie, Haibin Song, Qian Zhang*, In situ measurement and experimental analysis of lithium mass transport in graphite electrodes, Electrochimica Acta, 2018, 284:142–148.
[12]Baoqin Shi, Bin Han, Haimei Xie, Yilan Kang, Qian Zhang∗. C-rate Related Diffusion Process of the Graphite Electrode by In Situ Experiment and Analysis. Electrochimica Acta 378(2021):138151.
[13]H. M. Xie,W. Yang,Y. L. Kang,Q. Zhang*,B. Han, W. Qiu*,In-situ Strain Field Measurement and Mechano-electro-chemical Analysis of Graphite Electrodes Via Fluorescence Digital Image Correlation. Experimental Mechanics, 2021:1-12.
[14]Liting Zhang, Qian Zhang *, Siyang Zhou and Shanglin Liu,Modeling of Tunneling Total Loads Based on Symbolic Regression Algorithm. Applied Sciences, 2021, 11(12):5671.
[15]Haimei Xie, Yilan Kang, Qian Zhang*, Yuanbin Kang*, In situ experimental measurement of softening of material modulus and stresses evolution of Si-composite electrodes during the electrochemical process, Strength, Fracture and Complexity, 2020, 12: 135–141.
[16]Lihui Wang, Haipeng Li, Xiangjun Zhao, Qian Zhang*, Development of a prediction model for the wear evolution of disc cutters on rock TBM cutterhead, Tunnelling and Underground Space Technology, 2017, 67:147-157.
[17]Haimei Xie, Qian Zhang, Haibin Song, Baoqin Shi, Yilan Kang*, Modeling and in situ characterization of lithiation-induced stress in electrodes during the coupled mechano-electro-chemical process, Journal of Power Sources, 2017, 342: 896-903.
[18]Qian Zhang, CuiXia Su, QingHua Qin, ZongXi Cai, ZhenDe Hou, YiLan Kang*, Modeling and prediction for the thrust on EPB TBMs under different geological conditions by considering mechanical decoupling, Science China Technological Sciences, 2016, 59(9):1428-1434.
[19]Haipeng Song, Hao Zhang, Donghui Fu, Qian Zhang*, Experimental analysis and characterization of damage evolution in rock under cyclic loading, International Journal of Rock Mechanics and Mining Sciences, 2016, 88:157-164.
[20]Lihui Wang, Yilan Kang, Xiangjun Zhao, Qian Zhang*, Disc cutter wear prediction for a hard rock TBM cutterhead based on energy analysis, Tunnelling and Underground Space Technology, 2015, 50:324-333.
[21]Qian Zhang, Zhende Hou, Ganyun Huang, Zongxi Cai, Yilan Kang*, Mechanical characterization of the load distribution on the cutterhead–ground interface of shield tunneling machines, Tunnelling and Underground Space Technology, 2015, 47:106-113.
[22]Qian Zhang, Chuanyong Qu, Zongxi Cai, Yilan Kang*, Tian Huang, Modeling of the thrust and torque acting on shield machines during tunneling, Automation in Construction, 2014, 40: 60–67.
[23]Qian Zhang, Tian Huang, Ganyun Huang, Zongxi Cai, Yilan Kang*, Theoretical model for loads prediction on shield tunneling machine with consideration of soil-rock interbedded ground, Science China Technological Sciences, 2013, 56(9):2259-2267.
[24]Qian Zhang, Yilan Kang*, Zheng Zheng, Lihui Wang, Inverse analysis and modeling for tunneling thrust on shield machine, Mathematical Problems in Engineering, 2013, 2013:1-9.
[25]Qian Zhang, Chuanyong Qu, Yilan Kang*, Ganyun Huang, Zongxi Cai, Yu Zhao, Haifeng Zhao, Pengcheng Su, Identification and optimization of energy consumption by shield tunnel machines using a combined mechanical and regression analysis, Tunnelling and Underground Space Technology, 2012, 28:350-354.
[26]Lihui Wang, Yilan Kang*, Zongxi Cai, Qian Zhang, Yu Zhao, Haifeng Zhao, Pengcheng Su, The energy method to predict disc cutter wear extent for hard rock TBMs, Tunnelling and Underground Space Technology, 2012, 28:183-191.
[27]Honglei Zhang, Xuehui Lin, Yanqun Wang, Qian Zhang, Yilan Kang*, Identification of elastic-plastic mechanical properties for bimetallic sheets by hybrid-inverse approach, Acta Mechanica Solida Sinica, 2010, 23(1):29-35.
[28]张茜,蔡宗熙,黄干云,侯振德,亢一澜*,郑琳,盾构刀盘系统界面载荷力学表征与近似计算模型,力学学报,2012,44(5):861-868.
[29]张茜,王娟,亢一澜*,实验数据反演识别分析方法与力学表征,实验力学,2013, 28(2):141~150.
[30]郑峥,张茜*,亢一澜,盾构装备掘进总推力的反演识别与力学建模,机械工程学报,2014,50(21):31-37.
[31]周思阳,亢一澜,苏翠侠,张茜*. 基于力学分析的TBM 掘进总推力预测模型研究,机械工程学报,2016,52(20):76-82.
[32]张茜,曲传咏,黄田,蔡宗熙,亢一澜*,代斌,冷建忠,王燕群,盾构在掘进过程中的力学分析与载荷预估,工程力学,2012,29(7):291-297.
[33]张茜,周思阳,亢一澜,蔡宗熙,侯振德,一种基于量纲分析的盾构刀盘扭矩的计算方法,国家发明专利,专利号:201810034645.5.
[34]张茜,周思阳,亢一澜,蔡宗熙,侯振德,一种TBM刀盘扭矩确定方法及系统发明专利,国家发明专利,专利申请号:201910004148.5
[35]张茜,周思阳,亢一澜,蔡宗熙,侯振德,曲传咏,一种盾构刀盘扭矩确定方法及系统,国家发明专利,专利号:201910004164.4
[36]张茜,周思阳,亢一澜,侯振德,蔡宗熙,一种盾构掘进总推力确定方法及系统,发明专利,国家发明专利,专利号:201910004323.0
[37]张茜,周思阳等,亢一澜,蔡宗熙,侯振德,一种TBM掘进总推力确定方法及系统,国家发明专利,专利号:2019100041470
[38]张茜, 许超宸, 亢一澜, 仇巍, 杜红志, 于新童. 一种石墨烯与基底之间的界面黏着能的测量方法,国家发明专利,专利号:201811375472.X
[39]张茜,杨伟,石宝琴,谢海妹,亢一澜,一种原位观测锂离子扩散过程的电极结构,国家发明专利,申请号:201910101786.9.
[40]张茜,杨伟,石宝琴,谢海妹,亢一澜,一种电化学中基于荧光颗粒标记与主动光学测量的位移/应变测量方法,国家发明专利,申请号:201910107773.2.
[41]张茜,齐文聪,亢一澜,周思阳,复合土压平衡盾构在岩土混合地质掘进中刀盘扭矩的计算方法,申请号:201711498173.0.
[42]张茜,齐文聪,亢一澜,周思阳,复合土压平衡盾构在岩土混合地质掘进中总推力的计算方法,申请号:201711498786.4.
[43]张茜,亢一澜,蔡宗熙,侯振德,仇巍,曲传咏,左右转向时盾构推进油缸水平分区压力配比的确定方法,国家发明专利,专利号:201510014103.8
[44]张茜,亢一澜,周思阳,蔡宗熙,侯振德,王立辉,曲传咏,仇巍,硬岩TBM装备掘进过程中总推力的计算方法,国家发明专利,专利号:201510014104.2
[45]张茜,亢一澜,黄干云,蔡宗熙,曲传咏,侯振德,上下分层地质条件下盾构刀盘正面载荷的计算方法,国家发明专利,专利号:201110235394.5
[46]张茜,亢一澜,侯振德,黄田,蔡宗熙,隧道掘进机在不同地质下最优掘进速度的计算方法,国家发明专利,专利号:201110061812.3
[47]张茜,亢一澜,曲传咏,蔡宗熙,盾构掘进左右转向时回转弯矩的计算方法,国家发明专利,专利号:201210013422.3
[48]张茜,亢一澜,曲传咏,蔡宗熙,侯振德,盾构掘进中沿深度方向调向时俯仰弯矩的计算方法,国家发明专利,专利号:201210014173.x
[49]张茜,亢一澜,蔡宗熙,仇巍,王燕群,黄田,上下分层地质条件下盾构刀盘俯仰弯矩的计算方法,国家发明专利,专利号:201110237149.8
[50]张茜,亢一澜,蔡宗熙,黄干云,曲面型土压平衡盾构刀盘正面扭矩的计算方法,国家发明专利,国家发明专利,专利号:201410084127.6
[51]张茜,亢一澜,侯振德,蔡宗熙,曲传咏,仇巍,分层地质中盾构机推进油缸垂直分区压力配比的确定方法,国家发明专利,专利号:201510014566.4
[52]张茜,亢一澜,侯振德,蔡宗熙,盾构刀盘不同安装半径处刀具数量的确定方法,国家发明专利,专利号:201410083908.3
[53]亢一澜,张茜,蔡宗熙,黄干云,仇巍,隧道掘进机刀盘驱动载荷计算方法,国家发明专利,专利号:201110061650.3

院长信箱 | 党委书记信箱 | 相关链接 | 联系我们 | 法律声明
© 2018-2019 机械工程学院 版权所有 [技术支持]天津市天深科技股份有限公司