English  
姓名: 陈光
性别:
英文名: Chen Guang
人才称号:
职称: 副教授,硕士/博士生导师
职务: 专业: 机械制造及其自动化
所在机构: 机械工程系、数字化制造与精密加工技术研究所 个人主页:
邮箱: cgtju2009@tju.edu.cn 办公地点:
传真: 办公电话:
主要学历: 2009/03-2012/01,天津大学,机械工程,工学博士;
2007/07-2009/03,天津大学,机械工程,工学硕士;
2003/09-2007/07,天津大学,机械设计制造及其自动化,工学学士。

主要学术经历: 2018/06至今, 天津大学机械工程学院,博士生导师
2016/06至今, 天津大学机械工程学院,副教授
2014/01至今, 天津大学机械工程学院,硕士生导师
2017/12-2018/12, 美国肯塔基大学, 访问学者
2013/07-2013/12, 奥地利格拉茨技术大学,访问学者
2012/03-2016/06, 天津大学机械工程学院,讲师

主要研究方向: 1. 难加工材料高效切削技术与装备
2. 航空材料切削变形属性 
3. 高精度滚动轴承超精密加工技术与装备

主要讲授课程: 1. 《工程制图基础3》 (本科生56学时)
2. 《先进制造技术实验》 (本科生 64学时)
3. 《Advanced Manufacturing Technology》(研究生32学时)


主要学术兼职: 担任以下国内外期刊论文评审人: 
International Journal of Machine Tools & Manufacture, 
IMechE Part B: Journal of Engineering Manufacture, 
Machining Science and Technology, 
中国机械工程,
International Journal of Machining and Machinability of Materials,
International Journal of Thermal Sciences,
Journal of Computational Methods in Sciences and Engineering

主要学术成就: 主要从事航空材料切削变形属性、难加工材料高效切削机理、工艺装备等方面的研究工作。主持或参加国家、部委及横向课题等10余项;在Int J Mach Tool Manuf、Mater Des,等高水平学术期刊发表被 SCI收录论文20余篇、他引200余次;授权国内发明专利3项、国际专利6项。 

2015年入选“北洋学者-青年骨干教师”计划
2015年入选天津市“131”创新型人才培养工程第三层次 
2015年天津大学本科生毕业设计(论文)优秀指导教师 
2018 CIRP CSI-4th CIRP Conference on Surface Integrity “Best Poster Award” (第四届CIRP表面完整性国际会议 最佳海报奖)
2019年天津大学“教书育人”先进工作者

主要科研项目: 1. 国家自然科学基金面上项目,CFRP/钛合金叠层超声辅助螺旋铣孔表面性状形成机理,64万,2016.01-2019.12,项目负责人
2. 国家自然科学基金重点项目,轴承滚子高精度创成理论与实现方法,300万,2020.01-2024.12, 子课题负责人
3. 国家自然科学基金青年基金,钛合金超高应变率材料模型及其切削机理研究,25万,2013.01-2015.12,项目负责人
4. 天津市自然科学基金青年基金,基于霍普金森压杆的钛合金动态冲击超高速切削机理研究,6万,2016.04-2019.03,项目负责人
5. 天津市装备设计与制造技术重点实验室开放基金,航空铝合金切削过程超高应变率材料变形属性研究,2013.4-2016.4,校内项目负责人
6. 天津大学创新基金,切削超高应变率2024-T351合金材料本构模型研究,2013.1-2014.12, 项目负责人
7. 国家重点研发计划“制造基础技术与关键部件”专项项目,滚动轴承超精密制造与检测技术, 2019.01-2022.12, 参与人
8. 国家科技重大专项,数控机床误差测量、分析与补偿技术,2015.01-2017.12,参与人
9. 国家863计划,复合材料/合金叠层构件高效精密制孔工艺技术,2013.01-2015.12;参与人
10. 国家863计划,基于微细机构加工数控超精密机床子课题,2008.10-2012.12,参与人
11. 国家自然科学基金面上项目,基于界面细观力学行为的纤维增韧陶瓷基复合材料磨削机理,2013.01-2016.12,参与人

代表性论著: 发表论文:
[1] Chen G, Chen S, J. Caudill, I.S. Jawahir, Effect of cutting edge radius and cooling strategies on surface integrity in orthogonal machining of Ti-6Al-4V alloy, Procedia CIRP, 2019, 82: 148-153.
[2] Chen G, Lu LP, Ke ZH, Qin XD, Ren CZ, Influence of constitutive models on finite element simulation of chip formation in orthogonal cutting of Ti-6Al-4V alloy. Procedia Manufacturing, 2019, 33, 530-537.
[3] Zou YH, Chen G*, Lu LP, Qin XD, Ren CZ, Kinematic view of cutting mechanism in hole-making process of longitude-torsional ultrasonic assisted helical milling, International Journal of Advanced Manufacturing Technology, 2019,103(1), 267-280.
[4] Chen G, Ren CZ, Zou YH, Qin XD, Lu LP, Li SP, Mechanism for material removal in ultrasonic vibration helical milling of Ti-6Al-4V alloy, International Journal of Machine Tools and Manufacture, 2019,138: 1-13.
[5] Chen G, Ren CZ, Lu LP, Ke ZH, Qin XD, Ge X, Determination of ductile damage behaviors of high strain rate compression deformation for Ti-6Al-4V alloy using experimental-numerical combined approach. Engineering Fracture Mechanics, 2018, 200:499-520.
[6] Chen G, Lu LP, Ren CZ, Ge X, Temperature dependent negative to positive strain rate sensitivity and compression behavior for 2024-T351 aluminum alloy, Journal of Alloys and Compounds, 2018,765: 565-585.
[7] Wang ZQ, Ren CZ*, Chen G, Zhang LF, Deng XF, A comparative study on state of oxide layer in ELID grinding with tool-cathode and workpiece-cathode, The International Journal of Advanced Manufacturing Technology, 2018, 94: 1299-1307.
[8] Chen G, Ke ZH, Ren CZ, Li J, Constitutive modeling for Ti-6Al-4V alloy machining based on the SHPB tests and simulation, Chinese Journal of Mechanical Engineering, 2016, 29(5):962-970.
[9] Chen G, Ren CZ, Ke ZH, Li J, Yang XP, Modeling of flow behavior for 7050-T7451 aluminum alloy considering microstructural evolution over a wide range of strain rates, Mechanics of Materials, 2016, 95:146-157. 
[10] Zhang L, Ren C Z*, Ji C, Wang Z, Chen G, Effect of fiber orientations on surface grinding process of unidirectional C/SiC composites. Applied Surface Science, 2016, 366: 424-431.
[11] Ren CZ, Ke ZH, Chen G*, Wu J, Modeling of the tool-chip contact length for orthogonal cutting of Ti-6Al-4V alloy considering the segmented chip formation, Transactions of Tianjin University, 2016, 22(6), 525-535.
[12] Chen G, Ren C Z, Qin X D, Li J, Temperature dependent work hardening in Ti-6Al-4V alloy over large temperature and strain rate ranges: Experiments and constitutive modeling, Materials & Design, 2015, 83:598-610. 
[13] Li J, Yang X, Ren CZ, Chen G, Wang Y, Multiobjective optimization of cutting parameters in Ti-6Al-4V milling process using non-dominated sorting genetic algorithm-II, International Journal of Advanced Manufacturing Technology, 2015,76: 941-953. 
[14] Chen G, Li J, He YL, Ren CZ, A new approach to the determination of plastic flow stress and failure initiation strain for aluminum alloys cutting process, Computational Materials Science, 2014, 95:568-578. 
[15] Liu J, Chen G, Ji C H, Qin X D, Li H, Ren C Z. An investigation of workpiece temperature variation of helical milling for carbon fiber reinforced plastics (CFRP), International Journal of Machine Tools and Manufacture, 2014, 86: 89-103. 
[16] Chen G; Ren C Z; Zhang P; Cui K; Li Y. Measurement and finite element simulation of micro-cutting temperatures of tool tip and workpiece, International Journal of Machine Tools and Manufacture. 2013, 75: 16-26. 
[17] Chen G; Ren C Z; Yu W; Yang XY; Zhang LF. Application of Genetic Algorithms for optimizing the Johnson-Cook constitutive model parameters when simulating titanium alloy machining process, Proceedings of IMechE, Part B: Journal of Engineering Manufacture. 2012, 226(8):1287-1297. 
[18] Chen G; Ren C Z; Yang XY; Jin XM; Guo T. Finite element simulation of high speed machining of titanium alloy (Ti-6Al-4V) based on ductile failure model, International Journal of Advanced Manufacturing Technology, 2011, 56(9): 1027–1038. 
[19] Chen G; Ren C Z; Yang X Y; Guo T. Evidence of thermoplastic instability about segmented chip formation process for Ti-6Al-4V alloy based on finite element method, Proceedings of IMechE, Part C: Journal of Mechanical Engineering Science, 2011, 255(6): 1407–1417. 
[20] Chen G; Ren CZ; Jin XM; Guo T. Experimental and finite element study of steady state micro- cutting characteristics of aluminum alloy (2A12), Transactions of Tianjin University, 2011, 17(5): 344–350. 
[21] Cui KH; Ren CZ; Chen G. Numerical simulation for peripheral milling of aero-aluminum alloy based on 3D FE model, Key Engineering Materials, 2014, 589-590. 
[22] Guo T; Chen G; Ren CZ. A numerical model to determine temperature distribution in aluminum alloy (2A12) micro-cutting, Solid State Phenomena, 2011, 175:330–334. 
国内外发明专利:
[1]陈光,杨新鹏,任成祖,靳新民,邹云鹤,一种同时测量铣削过程铣刀及工件温度的测量系统,ZL201610837003.X
[2]陈光,卢连朋,任成祖,靳新民,邹云鹤,一种基于霍普金森压杆装置的模块化高速切削实验平台,ZL201710426024.7
[3]任成祖, 邓晓帆, 贺英伦, 陈光, 靳新民. 双盘直槽圆柱形零件表面研磨盘. ZL201410783965.2
[4]任成祖, 邓晓帆, 贺英伦, 陈光, 靳新民. 一种圆柱形零件研磨设备及其工件推进装置和研磨方法. ZL201410784413.3
[5]任成祖, 邓晓帆, 贺英伦, 陈光, 靳新民. Cylindrical-component grinding device, and workpiece advancing apparatus and grinding method thereof. US201715619498
[6]任成祖, 邓晓帆, 贺英伦, 陈光, 靳新民. Double-disc straight groove cylindrical-component surface grinding disc. US201715619443
[7]任成祖, 邓晓帆, 贺英伦, 陈光, 靳新民. ダブルディスク直線溝円筒状部品表面研磨ディスク. JP2017526063
[8]任成祖, 邓晓帆, 贺英伦, 陈光, 靳新民. 円筒状部品研磨設備及びそのワークピース推進装置、並び研磨方法. JP2017526065
[9]任成祖, 邓晓帆, 贺英伦, 陈光, 靳新民. 발명의 명칭 더블 디스크 직선홈 원통형 부품 표면 연마 디스크. KR20177014857
[10]任成祖, 邓晓帆, 贺英伦, 陈光, 靳新民. 발명의 명칭 원통형 부품 연마 설비 및 그 작업편 추진 장치와 연마 방법. KR20177014859

院长信箱 | 党委书记信箱 | 相关链接 | 联系我们 | 法律声明
© 2018-2019 机械工程学院 版权所有 [技术支持]天津市天深科技股份有限公司