English  
姓名: 郭翔
性别:
英文名: Guo Xiang
人才称号: 天津大学北洋青年学者
职称: 副教授,硕士生导师,博士生导师
职务: null 专业: 工程力学
所在机构: 力学系 个人主页:
邮箱: xiangguo@tju.edu.cn 办公地点: 天津大学机械工程学院,300354
传真: 办公电话:
主要学历: 佐治亚理工学院,亚特兰大,佐治亚,美国 机械工程系硕士 (2009年5月)
香港城市大学,香港 建筑系博士 (2006年8月)
兰州大学,兰州,甘肃,中国 力学系硕士 (2003年6月)
兰州大学,兰州,甘肃,中国 力学系学士 (2000年6月)

主要学术经历: 天津大学,天津 副教授(2011年3月—至今)
(Monash大学马来西亚分校,研究助理 (2016年10月—2016年12月))
(香港城市大学,研究员 (2014年1月—2014年2月))
(香港城市大学,研究员 (2012年7月—2012年8月))
(香港城市大学,研究助理 (2012年1月—2012年4月))
(香港大学,研究助理 (2011年6月—2011年8月))
香港大学,香港 博士后研究员(2009年11月—2011年1月)
香港城市大学,香港 高级研究助理(2009年5月—2009年11月)

主要研究方向: 纳米力学,工程结构与材料的断裂力学

主要讲授课程: 理论力学(本科生 64课时,80课时)
力学的发展与科研(本科生 2课时)
力学与工程(本科生 2课时)
大型工程软件应用 (本科生 20课时)

主要学术兼职: 中国材料研究学会疲劳分会理事
中国材料研究学会镁合金分会青年委员会委员
天津市力学学会复合材料专业委员会副秘书长

主要学术成就: 在新型工程材料强度韧性设计,纳米力学和风沙力学3个研究方向上发表了55篇SCI论文,其中28篇为1区和2区的SCI论文。
第十四届全国周培源大学生力学竞赛(个人赛)优秀指导教师奖(2023)
天津大学北洋青年学者(2018-2021)
天津大学校级优秀硕士学位论文《两类新型纳米结构金属的弹道性能和断裂行为的数值模拟》指导教师(2017)
天津大学校级优秀硕士学位论文《高强高韧纳米结构金属的拉伸和防冲击行为的数值模拟》指导教师(2017)
杜庆华力学与工程奖优秀青年学者奖(2016)
天津大学第十一届青年教师讲课大赛二等奖(2016)
天津大学本科生毕业设计(论文)优秀指导教师(2015,2016)
天津大学北洋学者-青年骨干教师(2014-2015)
天津大学机械工程学院第一届研究生“我心目中的十佳好导师”(2013)
天津市高校2013年度“131”创新型人才第三层次(2013)

主要科研项目: 玄武岩纤维在防刺/防弹领域应用模拟研究,中国科学院新疆理化技术研究所,起止年月:2022年10月-2025年9月,角色:负责,资助额度:10万。
基于微结构设计的三模态纳米结构金属材料的防弹性能优化的数值模拟研究,爆炸科学与技术国家重点实验室开放基金,起止年月:2020年1月-2021年12月,角色:负责,资助额度:10万。
高过载多次脉冲载荷下装药损伤演化规律研究,西安近代化学研究所开放合作创新基金,起止年月:2019年9月-2021年9月,角色:负责,资助额度:20万。
高温氢损伤和蠕变-疲劳断裂机制,国家重点研发计划《严苛环境下典型承压设备的损伤机理及预测模型》的子课题,起止年月:2018年7月-2021年6月,角色:负责,资助额度:34万。
表面机械研磨纳米化与渗氮技术的联合使用对金属疲劳寿命影响的研究,天津市自然科学基金,起止年月:2018年4月-2021年3月,角色:负责,资助额度:10万。
金属的断裂行为,天津大学北洋青年学者,起止年月:2018年1月-2021年12月,角色:负责,资助额度:40万。
基于微结构设计的三模态纳米结构金属强韧性优化的数值模拟研究,机械结构强度与振动国家重点实验室开放基金,起止年月:2017年11月-2019年10月,角色:负责,资助额度:10万。
陶瓷/表面纳米化金属/复合材料的新型板材的防弹性能数值模拟研究,爆炸科学与技术国家重点实验室开放基金,起止年月:2017年1月-2018年12月,角色:负责,资助额度:10万。
用于轻型坦克的含不锈钢纳米晶层的新型陶瓷/金属/复合材料装甲的防弹性能优化,天津大学,起止年月:2014年1月-2015年12月,角色:负责,资助额度:6万。
表面纳米化制备的高强金属的疲劳行为,天津大学北洋学者-青年骨干教师计划,编号:2014XRG-0012,起止年月:2014年1月-2014年12月,角色:负责,资助额度:10万。
用于头盔的含不锈钢纳米晶层的新型混合板材的防弹性能优化,国家自然科学基金,编号:11372214,起止年月:2014年1月-2017年12月,角色:负责,资助额度:80万。
含纳米晶层的层状金属增韧机理的数值模拟研究,国家自然科学基金,编号:11102128,起止年月:2012年1月-2014年12月,角色:负责,资助额度:25万。
高强高韧层状不锈钢的韧性设计,天津大学,起止年月:2011年7月-2012年6月,角色:负责,资助额度:5万。

代表性论著: X.D. Zan, X. Guo(*), and G.J. Weng. Hydride enhanced strain localization in zirconium alloy: A study by crystal plasticity finite element method. International Journal of Plasticity, 174(1), 103911 (2024). Impact factor: 9.8 影响因子:9.8 (1区)
Y.X. Wang, X. Guo(*), C. Fang, S.W. Shi(*), G.J. Weng, and G. Chen. Fatigue crack growth behavior of proton exchange membrane in fuel cells under humidity cycling. Journal of Power Sources, 597(1), 234074 (2024). 影响因子:9.2 (2区)
C. Fang, X. Guo(*), J.H. Li, and G. Chen(*). Relations of microstructural attributes and strength-ductility of zirconium alloys with hydrides. Chinese Journal of Mechanical Engineering, 36(1), 89 (2023). 影响因子:4.2 (3区)
X.D. Zan, X. Guo(*), X.D. Xia, G.J. Weng, G. Chen, and F.Z. Han. Anisotropic deformation mechanisms of rolling-textured Zircaloy-4 alloy by a crystal plasticity model. Computational Materials Science, 229(1), 112424 (2023). 影响因子: 3.3 (3区)
X.D. Zan, X. Guo(*), G.J. Weng, and G. Chen. Nanoindentation study of δ-phase zirconium hydride using the crystal plasticity model. International Journal of Plasticity, 167(1), 103675 (2023). 影响因子:9.8 (1区)
C. Bi, X. Guo(*), A.H. Wang, G.J. Weng, K.P. Qu, F. Shen, and L.L. Zhu. Strain-rate-dependent cohesive zone modelling of charge damage behavior when a projectile penetrates multilayered targets. Acta Mechanica, 234(7), 2869–2887 (2023). 影响因子:2.7 (3区)
Y.J. Zhang, J.T. Fan, B. Gan, X. Guo, H.H, Ruan, and L.L. Zhu(*). Constitutive modeling of mechanical behaviors in gradient nanostructured alloys with hierarchical dual-phased microstructures. Acta Mechanica, 233(1), 3197–3212 (2022). 影响因子:2.7 (3区)
X.D. Xia, X. Guo, and G.J. Weng(*). Creep rupture in carbon nanotube-based viscoplastic nanocomposites. International Journal of Plasticity, 150(1), 103189-1-19 (2022). 影响因子:9.8 (1区)
X. Guo(*), G.Y. Chai, G.J. Weng, L.L. Zhu, and J. Lu. Tuning the strength-ductility synergy of nanograined Cu through nanotwin volume fraction. Computational Materials Science, 203(1), 111073-1-9 (2022). 影响因子:3.300 (3区)
C. Fang, X. Guo(*), G.J. Weng, J.H. Li, and G. Chen(*). Simulation of ductile fracture of zirconium alloys based on triaxiality dependent cohesive zone model. Acta Mechanica, 232(9), 3723–3736 (2021). 影响因子:2.645 (3区)
L.L. Zhu(*), H.H. Ruan, L.G. Sun, X. Guo, and J. Lu. Constitutive modeling of size-dependent deformation behavior in nano-dual-phase glass-crystal alloys. International Journal of Plasticity, 137(1), 102918-1-19 (2021). 影响因子:8.5 (1区)
Y.X. Wang, X. Guo(*), S.W. Shi(*), G.J. Weng, G. Chen, and J. Lu. Biaxial fatigue crack growth in proton exchange membrane of fuel cells based on cyclic cohesive finite element method. International Journal of Mechanical Sciences, 189(1), 105946-1-12 (2021). 影响因子:6.772 (升级版1区)
S.W. Shi(*), X.Y. Sun, Q. Lin, J. Chen, Y.J. Fu, X.D. Hong, C. Li, X. Guo(*), G. Chen(*), and X. Chen. Fatigue crack propagation behavior of fuel cell membranes after chemical degradation. International Journal of Hydrogen Energy, 45(51), 27653–27664 (2020). 影响因子:5.816 (2区)
X. Guo(*), Y. Liu, G.J. Weng, L.L. Zhu, J. Lu, and G. Chen(*). Microstructure-property relations in the tensile behavior of bimodal nanostructured metals. Advanced Engineering Materials, 22(6), 2000097-1-13 (2020). 影响因子:3.862 (3区)
J. Li, Z. Wang, Y. Cheng, Y. Xin(*), H. Wu, X. Guo, and G. Chen(*). Effect of hydride precipitation on the fatigue cracking behavior in a zirconium alloy cladding tube. International Journal of Fatigue, 129(1), 105230-1-9 (2019). 影响因子:4.369 (2区)
G. Chen, Y. Fu, Y. Cui, J. Gao, X. Guo, H. Gao, S. Wu, J. Lu, Q. Lin(*), and S. Shi(*). Effect of surface mechanical attrition treatment on corrosion fatigue behavior of AZ31B magnesium alloy. International Journal of Fatigue, 127(1), 461–469 (2019). 影响因子:4.369 (2区)
L.L. Zhu(*), C.S. Wen, C.Y. Gao, X. Guo, Z. Chen, and J. Lu. Static and dynamic mechanical behaviors of gradient-nanotwinned stainless steel with a composite structure: Experiments and modeling. International Journal of Plasticity, 114(1), 272–288 (2019). 影响因子:6.490 (1区)
X. Guo(*), Y. Liu, G.J. Weng, and L.L. Zhu. Tensile failure modes in nanograined metals with nanotwinned regions. Metallurgical and Materials Transactions A, 49(10), 5001–5014 (2018). 影响因子:1.985 (3区)
X. Guo(*), G. Yang, G.J. Weng, and J. Lu. Interface effects on the strength and ductility of bimodal nanostructured metals. Acta Mechanica, 229(8), 3475–3487 (2018). 影响因子:2.166 (3区)
X. Guo(*), Q.Q. Sun, T. Yang, G.J. Weng, C.B. Zhang, and X.Q. Feng. Local Monte Carlo method for fatigue analysis of coarse-grained metals with a nanograined surface layer. Metals, 8(7), 479-1-15 (2018). 影响因子:2.259 (3区)
X. Guo(*), Q.D. Ouyang, Y.B. Sun, and G.J. Weng. Ballistic performance of nanostructured metals toughened by elliptical coarse-grained inclusions: A finite element study with failure analysis. Materials, 11(6), 977-1-18 (2018). 影响因子:2.972 (3区)
Q.Q. Sun, X. Guo(*), G.J. Weng, G. Chen(*), and T. Yang. Axial-torsional high-cycle fatigue of both coarse-grained and nanostructured metals: A 3D cohesive finite element model with uncertainty characteristics. Engineering Fracture Mechanics, 195(1), 30–43 (2018). 影响因子:2.908 (3区)
G. Chen, J. Gao, Y. Cui(*), H. Gao, X. Guo(*), and S. Wu. Effects of strain rate on the low cycle fatigue behavior of AZ31B magnesium alloy processed by SMAT. Journal of Alloys and Compounds, 735(1), 536–546 (2018). 影响因子:4.175 (2区)
Q.D. Ouyang, A.K. Soh, G.J. Weng, L.L. Zhu, and X. Guo(*). The limit velocity and limit displacement of nanotwin-strengthened metals under ballistic impact. Acta Mechanica, 229(4), 1741–1757 (2018). 影响因子:2.166 (3区)
K. Wu, X. Guo, H.H. Ruan, and L.L. Zhu(*). Micromechanical modeling for mechanical properties of gradient-nanotwinned metals with a composite microstructure. Materials Science and Engineering A, 703(1), 180–186 (2017). 影响因子:3.414 (2区)
L.L. Zhu(*), H.H. Ruan, A.Y. Chen, X. Guo, and J. Lu(*). Microstructures-based constitutive analysis for mechanical properties of gradient-nanostructured 304 stainless steels. Acta Materialia, 128(1), 375–390 (2017). 影响因子:6.036 (1区)
L.L. Zhu(*), C.S. Wen, C.Y. Gao(*), X. Guo, and J. Lu. A study of dynamic plasticity in austenite stainless steels with a gradient distribution of nanoscale twins. Scripta Materialia, 133(1), 49–53 (2017). 影响因子:4.163 (2区)
Q.D. Ouyang, X. Guo(*), and X.Q. Feng. 3D microstructure-based simulations of strength and ductility of bimodal nanostructured metals. Materials Science and Engineering A, 677(1), 76–88 (2016). 影响因子:3.094 (2区)
X. Guo(*), X. Sun, X. Tian, G.J. Weng, Q.D. Ouyang, and L.L. Zhu(*). Simulation of ballistic performance of a two-layered structure of nanostructured metal and ceramic. Composite Structures, 157(1), 163–173 (2016). 影响因子:3.858 (2区)
L.L. Zhu(*), X. Guo, and H.H. Ruan. Simulating size and volume fraction dependent strength and ductility of nanotwinned composite copper. Journal of Applied Mechanics, 83(7), 071009-1-8 (2016). 影响因子:2.133 (3区)
X. Guo(*), G. Yang, and G.J. Weng. The saturation state of strength and ductility of bimodal nanostructured metals. Materials Letters, 175(1), 131–134 (2016). 影响因子:2.572 (2区)
X. Guo(*), Q.D. Ouyang, G.J. Weng, and L.L. Zhu. The direct and indirect effects of nanotwin volume fraction on the strength and ductility of coarse-grained metals. Materials Science and Engineering A, 657(1), 234–243 (2016). 影响因子:3.094 (2区)
L.L. Zhu(*), X. Guo, H.H. Ruan, and J. Lu. Prediction of mechanical properties in bimodal nanotwinned metals with a composite structure. Composites Science and Technology, 123(1), 222–231 (2016). 影响因子:4.873 (2区)
G. Yang, X. Guo(*), G.J. Weng, L.L. Zhu, and R. Ji. Simulation of ballistic performance of coarse-grained metals strengthened by nanotwinned regions. Modelling and Simulation in Materials Science and Engineering, 23(8), 085009-1-22 (2015). 影响因子:1.859 (3区)
X. Guo(*), T. Yang, and G.J. Weng. 3D cohesive modeling of nanostructured metallic alloys with a Weibull random field in torsional fatigue. International Journal of Mechanical Sciences, 101(1), 227–240 (2015). 影响因子:2.481 (2区)
J.H. Wang, W.J. Zhang(*), X. Guo, A. Koizumi, and H. Tanaka. Mechanism for buckling of shield tunnel linings under hydrostatic pressure. Tunnelling and Underground Space Technology, 49(1), 144–155 (2015). 影响因子:1.741 (3区)
X. Guo(*), G. Yang, G.J. Weng, and L.L. Zhu. Numerical simulation of ballistic performance of bimodal nanostructured metals. Materials Science and Engineering A, 630(1), 13–26 (2015). 影响因子:2.647 (2区)
L.L. Zhu(*), S.X. Qu, X. Guo, and J. Lu(*). Analysis of the twin spacing and grain size effects on mechanical properties in hierarchically nanotwinned face-centered cubic metals based on a mechanism-based plasticity model. Journal of the Mechanics and Physics of Solids, 76(1), 162–179 (2015). 影响因子:3.875 (2区)
X. Guo(*), R. Ji, G.J. Weng, L.L. Zhu, and J. Lu. Computer simulation of strength and ductility of nanotwin-strengthened coarse-grained metals. Modelling and Simulation in Materials Science and Engineering, 22(7), 075014-1-22 (2014). 影响因子:2.167 (3区)
X. Guo(*), R. Ji, G.J. Weng, L.L. Zhu, and J. Lu. Micromechanical simulation of fracture behavior of bimodal nanostructured metals. Materials Science and Engineering A, 618(1), 479–489 (2014). 影响因子:2.567 (2区)
L.L. Zhu(*), X. Guo, and J. Lu(*). Surface stress effects on the yield strength in nanotwinned polycrystal face-centered-cubic metallic nanowires. Journal of Applied Mechanics, 81(10), 101002-1-6 (2014). 影响因子:1.370 (4区)
X. Guo(*), X.Y. Dai, L.L. Zhu, and J. Lu. Numerical investigation of fracture behavior of nanostructured Cu with bimodal grain size distribution. Acta Mechanica, 225(4), 1093–1106 (2014). 影响因子:1.465 (4区)
X. Guo(*), W.J. Zhang, L.L. Zhu, and J. Lu. Mesh dependence of transverse cracking in laminated metals with nanograined interface layers. Engineering Fracture Mechanics, 105(1), 211–220 (2013). 影响因子:1.662 (3区)
X. Guo(*), K. Chang, L.Q. Chen, and M. Zhou(*). Determination of fracture toughness of AZ31 Mg alloy using the cohesive finite element method. Engineering Fracture Mechanics, 96(1), 401–415 (2012). 影响因子:1.413 (4区)
X. Guo, G.J. Weng, and A.K. Soh(*). Ductility enhancement of layered stainless steel with nanograined interface layers. Computational Materials Science, 55(3), 350–355 (2012). 影响因子:1.878 (3区)
X. Guo, R. K.L. Su, and B. Young(*). Numerical investigation of the bilinear softening law in the cohesive crack model for normal-strength and high-strength concrete. Advances in Structural Engineering, 15(3), 373–387 (2012). 影响因子:0.489 (4区)
X. Guo, A. Y.T. Leung(*), A.Y. Chen, H.H. Ruan, and J. Lu. Investigation of non-local cracking in layered stainless steel with nanostructured interface. Scripta Materialia, 63(4), 403–406 (2010). 影响因子:2.820 (2区)
X. Guo, W. Liang, and M. Zhou(*). Mechanism for the pseudoelastic behavior of FCC shape memory nanowires. Experimental Mechanics, 49(2), 183–190 (2009). 影响因子:1.542 (4区)
X. Guo, A. Y.T. Leung(*), X.Q. He, H. Jiang, and Y. Huang. Bending buckling of single-walled carbon nanotubes by atomic-scale finite element. Composites: Part B, 39(1), 202–208 (2008). 影响因子:1.481 (3区)
X. Guo, A. Y.T. Leung(*), H. Jiang, X.Q. He, and Y. Huang. Critical strain of carbon nanotubes: an atomic-scale finite element study. Journal of Applied Mechanics, 74(2), 347–351 (2007). 影响因子:0.956 (4区)
A. Y.T. Leung(*), X. Guo, X.Q. He, H. Jiang, and Y. Huang. Postbuckling of carbon nanotubes by atomic-scale finite element. Journal of Applied Physics, 99(12), 124308-1-5 (2006). 影响因子:2.316 (2区)
A. Y.T. Leung(*), X. Guo, X.Q. He, and S. Kitipornchai. A continuum model for zigzag single-walled carbon nanotubes. Applied Physics Letters, 86(8), 083110-1-3 (2005). 影响因子:4.127 (2区)
K. Kroy(*) and X. Guo. Comment on “Relevant length scale of barchan dunes.” Physical Review Letters, 93(3), 039401 (2004). 影响因子:7.218 (1区)
X. Guo, X.J. Zheng, and Y.H. Zhou. Research on theoretical predictions of electric field generated by wind-blown sand. Key Engineering Materials, 244, 583–588 (2003).
Y.H. Zhou(*), X. Guo, and X.J. Zheng. Experimental measurement of wind-sand flux and sand transport for naturally mixed sands. Physical Review E, 66(2), 021305-1-9 (2002). 影响因子:2.508 (2区)


院长信箱 | 党委书记信箱 | 相关链接 | 联系我们 | 法律声明
© 2018-2019 机械工程学院 版权所有 [技术支持]天津市天深科技股份有限公司