English  
姓名: 王福军
性别:
英文名: Wang Fujun
人才称号:
职称: 教授;硕士生导师;博士生导师
职务: null 专业: 机械制造及其自动化
所在机构: 机械工程系 个人主页:
邮箱: wangfujun@tju.edu.cn 办公地点: 天大机械工程学院37楼
传真: 办公电话:
主要学历: 2007.03 - 2010.03,天津大学,机械制造及其自动化专业,工学博士
2005.09 - 2007.03,天津大学,机械制造及其自动化专业,工学硕士

主要学术经历: 2010.10 - 至今, 天津大学机械工程学院机械工程系,讲师,副教授
2014.01 - 至今, 天津大学机械工程学院机械工程系,硕士生导师
2011.02 - 2011.02,香港科技大学,交流访问
2013.12 - 2014.12,美国伊利诺伊大学香槟校区(UIUC),访问学者

主要研究方向: 微操作机器人;
柔性驱动器与机器人;
柔性机构系统;
机电系统动力学与控制;
精密定位与操作
精密制造装备与工艺;


主要讲授课程: 《微纳米机器人基础与技术》;
《工程图学基础3》;
《工程图学1B》;
《CAD/CAM实习》

主要学术兼职: 天津市自动化技术应用研究会会员;
国际期刊 IEEE/ASME Transactions on Mechatronics, International Journal of Fatigue,Mechatronics,International Journal of Advanced Manufacturing Technology,Applied Surface Science,Physica B,Recent Patents on Mechanical Engineering评审人;
国家自然科学基金面上项目评审人。

主要学术成就: 主持/参加国际合作、国家和省部级课题10余项,发表论文50余篇,其中SCI检索40余篇。
2012 入选首批天津大学北洋学者青年骨干教师计划
2013 获天津市/天津大学优秀博士学位论文
2015 获天津大学本科毕业设计优秀指导教师

主要科研项目: [1]国家自然科学基金面上项目, 柔性器件主动可控超声微转印关键基础问题研究, 2017/01-2020.12, 主持。
[2]国家自然科学基金面上项目, 超声辅助纳米加工系统及其关键技术研究, 2017/01-2020.12, 参与。
[3]欧盟2020地平线项目,面向单细胞操作的微纳操作机器人,2017.01-2020.12,天津大学部分负责人。
[4]广东省精密装备与制造技术重点实验室课题,面向激光微细加工的高效精密定位系统设计与控制,2016.01-2017.12,主持。
[5]特种车辆及其传动系统智能制造国家重点实验室课题,主动轮齿圈激光涂覆基础科学与关键技术研究,2016.03-2017.12,主持。
[6]高档数控机床与基础制造装备国家科技重大专项课题,数控机床误差测量、分析与补偿技术,2015.01-2017.12,参与。
[7]国家自然科学基金项目, 基于柔性聚合物薄膜的微结构/器件超声压焊技术研究, 2015/01-2017/12, 参加。
[8]国家自然科学基金项目, 音圈电机直驱的柔性解耦定位系统动力学特性与控制方法”,2013/01-2015/12, 主持。
[9]天津市自然科学基金青年项目, 射频识别芯片热超声键合质量监测相关基础问题研究, 2013/01-2016/12, 主持。
[10]国家自然科学基金项目, 三维可控探针纳米加工系统及其关键技术研究, 2013/01-2016/12, 参加。
[11]欧盟第七框架项目,生物医疗机器人及其应用,2014.01—2017.12,参与。
[12]863计划重大项目, 箱体类精密工作母机共性前沿技术平台, 2012/01-2015/12, 参加。
[13]国家自然科学基金青年基金项目, 牙科陶瓷材料旋转超声加工关键技术研究, 2012/01-2014/12, 参加。
[14]天津大学“北洋学者”青年骨干教师计划项目, 高速精密定位系统动态设计与控制, 2012/06-2014/06, 主持。
[15]天津市科技支撑计划重点项目, 高速精密IC芯片键合机设计理论与样机建造, 2010/04-2013/03, 参加。
[16]天津市应用基础研究计划项目, 一类新型激振系统的动态设计理论与关键技术, 2006/01-2009/12, 参加。

代表性论著: SCI检索期刊论文:
[1] Wang F J*, Liang C M, Tian Y L, Zhao X Y, and Zhang D W. Design and control of a compliant microgripper with a large amplification ratio for high-speed micro manipulation, IEEE/ASME Transactions on Mechatronics, 2016, 21(3): 1262-1271.
[2] Wang F J*, Zhang H J, Liang C M, Tian Y L, Zhao X Y, and Zhang D W. Design of high frequency ultrasonic transducers with flexure decoupling flanges for thermosonic bonding, IEEE Transactions on Industrial Electronics, 2016,63(4): 2304-2312.
[3] Wang F J*, Liang C M, Tian Y L, Zhao X Y, and Zhang D W. A flexure-based kinematically decoupled micropositioning stage with a centimeter range dedicated to micro/nano manufacturing, IEEE/ASME Transactions on Mechatronics, 2016, 21(2): 1055-1022.
[4] Zhang H J, Wang F J*, Zhang D W, Wang L J, Hou Y Y, and Xi T. A new automatic resonance frequency tracking method for piezoelectric ultrasonic transducers used in thermosonic bonding, Sensors and Actuators: A-Physical, 2015, 235: 140-150.
[5] Wang F J, Ma, Z P, Gao W G*, Zhao X Y, Tian Y L, Zhang D W, and Liang C M. Dynamic modeling and control of a novel XY positioning stage for semiconductor packaging, Transactions of the Institute of Measurement and Control, 2015, 37(2): 177-189.
[6] Liang C M, Wang F J*, Tian Y L, Zhao X Y, Zhang H J, Cui L Y, Zhang D W, and Ferreira P. A novel monolithic piezoelectric actuated flexure-mechanism based wire clamp for microelectronic device packaging, Review of Scientific Instruments, 2015, 86: 045106.1-10.
[7] Wang F J*, Liang C M, Tian Y L, Zhao X Y, and Zhang D W. Design of a piezoelectric- actuated microgripper with a three-stage flexure-based amplification, IEEE/ASME Transactions on Mechatronics, 2015, 20(5): 2205-2213.
[8] Zhang H J*, Wang F J, Xi T, Zhao J, Wang L J, and Gao W G. A novel quality evaluation method of resistance spot welding based on the electrode displacement signal and Chernoff faces technique, Mechanical Systems and Signal Processing, 2015, 62: 431-443.
[9] Guo Z Y, Tian Y L*, Liu C F, Wang F J, Liu X P, and Zhang D W. Design and control methodology of a 3-DOF flexure-based mechanism for micro/nano positioning, Robotics and Computer Integrated Manufacturing, 2015, 32: 93-105.
[10] Tian Y L*, Liu C F, Liu X P, Wang F J, Li X C, Qin Y D, Zhang D W, and Shirinzadeh B. Design, modeling and characterization of a 2-DOF precision positioning platform, Transactions of the Institute of Measurement and Control, 2015, 37(3): 396-405.
[11] Wang F J*, Li J L, Liu S W, Zhao X Y, Zhang D W, and Tian Y L. An improved adaptive genetic algorithm for image segmentation and vision alignment used in microelectronic bonding, IEEE/ASME Transactions on Mechatronics, 2014, 19(3): 916-923.
[12] Zhang H J*, Wang F J, Gao W G, and Hou Y Y. Quality assessment for resistance spot welding based on binary image of electrode displacement signal and probabilistic neural network, Science and Technology of Welding and Joining, 2014, 19(3): 242-249.
[13] Han L*, Zhang D W, Tian Y L, Wang F J, and Xiao H. Static stiffness modeling and sensitivity analysis for geared system used for rotary feeding, PIMechE, Part C, Journal of Mechanical Engineering Science, 2014, 228(8): 1431-1443.
[14] Tian Y L*, Li Z, Gao W G, Cai K H, Wang F J, Zhang D W, Shirinzadeh B, and Fatikow S. Mechanical properties investigation of monolayer h-BN sheet under in-plane shear displacement using molecular dynamics, Journal of Applied Physics, 2014, 115(1): 1-9.
[15] Zhang H J, Wang F J*, Zhao X Y, Zhang D W, and Tian Y L. Electrical matching of low power piezoelectric ultrasonic transducers for microelectronic bonding, Sensors and Actuators A: Physical, 2013, A199: 241-249.
[16] Han L*, Zhang D W, and Wang F J. Predicting film parameter and friction coefficient for helical gears considering surface roughness and load variation, Tribology Transactions, 2013, 56(1): 49-57.
[17] Li X C, Tian Y L*, Qin Y D, Wang F J, Gao W G, Zhang D W, and Fatikow S. Design, identification and control of a 2-DOF flexure-based mechanism for micro/nano manipulation, Nanoscience and Nanotechnology Letters, 2013. 5(9): 960-967.
[18] Han L, Niu W T*, Zhang D W, and Wang F J. An improved algorithm for calculating friction force and torque in involute helical gears, Mathematical Problems in Engineering, 2013, 1: 1-13.
[19] Tian Y L, Cai K H, Gao W G*, Wang F J, Zhang D W, Shirinzadeh B, Fatikow S. Transverse vibration analyses of cantilevered boron nitride nanocones, Micro & Nano Letters, 2013, 8(12): 899-902.
[20] Wang F J*, Zhao X Y, Zhang D W, Ma Z P, and Jing X B. Robust and precision control for a directly driven XY table, Proc. IMechE, Part C, Journal of Mechanical Engineering Science, 2011, 225(5): 1107-1120.
[21] Wang F J*, Zhao X Y, Zhang D W, Wu Y M, Shirinzadeh B, and Tian Y L. Design and control of a high-acceleration precision positioning system with a novel flexible decoupling mechanism, Proc. IMechE, Part C, Journal of Mechanical Engineering Science, 2010, 224(2): 431-442.
[22] Wang F J*, Zhao X Y, Zhang D W, and Wu Y M. Design and control of a directly-driven bond head for thermosonic bonding, Proc. IMechE, Part C, Journal of Mechanical Engineering Science, 2010, 224(4): 805-815.
[23] Wang F J*, Zhao X Y, Zhang D W, and Wu Y M. Development of novel ultrasonic transducers for microelectronics packaging, Journal of Materials Processing Technology, 2009, 209(3): 1291-1301.
[24] Wang F J*, Mao H D, Zhang D W, and Zhao X Y. The crack control during laser cladding by adding the stainless steel net in the coating, Applied Surface Science, 2009, 255(21): 8846-8854.
[25] Wang F J*, Mao H D, Zhang D W, Zhao X Y, and Shen Y. Online study of cracks during laser cladding process based on acoustic emission technique and finite element analysis, Applied Surface Science, 2008, 255(5): 3267-3275.

院长信箱 | 党委书记信箱 | 相关链接 | 联系我们 | 法律声明
© 2018-2019 机械工程学院 版权所有 [技术支持]天津市天深科技股份有限公司