姓名: |
王伟光 |
|
性别: |
男 |
英文名: |
Weiguang Wang |
人才称号: |
|
职称: |
副研究员(硕导) |
职务: |
|
专业: |
动力工程及工程热物理 |
所在机构: |
先进内燃动力全国重点实验室 |
个人主页: |
|
邮箱: |
wangweiguang@tju.edu.cn |
办公地点: |
天津大学北洋园校区34楼(热动力大楼) |
传真: |
|
办公电话: |
|
主要学历: |
2016.09-2021.06,天津大学,动力机械及工程,研究生,工学博士
2014.09-2016.06,天津大学,动力机械及工程,研究生,工学硕士
2010.09-2014.07,大连交通大学,车辆工程(詹天佑班),本科,工学学士
|
主要学术经历: |
2024.02至今,天津大学机械工程学院,副研究员
2021.07-2024.01,天津大学机械工程学院,助理研究员
2019.10-2020.10,美国哥伦比亚大学,联合培养博士
|
主要研究方向: |
(1)液流电池储能
(2)热电化学储能及转化
(3)多物理场数值模拟
(4)能源利用中的多学科交叉问题
欢迎能动、化工、材料、化学等相关专业有科研热情的本科生、研究生加入!
|
主要讲授课程: |
|
主要学术兼职: |
Journal of Power Sources、Electrochimica Acta、Separation and Purification Technology等国际期刊审稿专家
|
主要学术成就: |
2023年,入选天津大学科技创新领军人才培育计划
2023年,本科毕业生优秀指导教师
2020年,中船奖学金
2019年,天津大学科技创新先进个人
2019年,国家公派出国留学资格
|
主要科研项目: |
1. 天津大学科技创新领军人才培育项目:耦合热再生电化学循环和氧化还原靶向反应的高能量全钒液流电池,2023.01-2024.12,负责人,在研;
2. 国家自然科学基金青年项目:太阳能分布式利用的集热型免充电热再生电化学液流循环系统 [52206020],2023.01-2025.12,负责人,在研;
3. 国家重点研发计划“政府间国际科技创新合作”子课题:提高中载及重载卡车能效关键技术中美联合研究,2022.06-2024.05,负责人,在研;
4. 中国博士后科学基金项目:用于低温余热转化的双金属热再生氨基液流电池热质调控与联合循环研究 [2021TQ0236],2021.07-2024.06,负责人,在研;
5. 天津大学自主基金:热再生电化学液流循环仿真研究,2022.01-2022.12,负责人,结题;
|
代表性论著: |
(#:co-first author;*:co-corresponding author)
1.Wang W, Tian H*, Huo D, et al. Review of thermally regenerative batteries based on redox reaction and distillation for harvesting low-grade heat as electricity[J]. Chemical Engineering Journal, 2023: 145503.
2.Tian H, Liu Y, Wang W*, et al. Enhanced efficiency of photovoltaic/thermal module by integrating a charging-free thermally regenerative electrochemical cycle[J]. Energy Conversion and Management, 2023, 291: 117251.
3.Li S, Wang W, Liu Y, et al. A numerical model for a thermally regenerative electrochemical cycled flow battery for low-temperature thermal energy harvesting[J]. DeCarbon, 2023, 1: 100007.
4.Tian H, Wang W, Zhu X, et al. Bimetallic thermally-regenerative ammonia batteries[M]//Low-Grade Thermal Energy Harvesting. Woodhead Publishing, 2022: 163-192. (英文专著章节)
5.舒歌群, 杨爽, 王伟光等. 基于多尺度, 热再生氨基液流电池电堆模型建立及性能分析[J]. 天津大学学报: 自然科学与工程技术版, 2022, 55(12): 1219-1229.
6.Huo D, Tian H*, Wang W*, et al. Na/K mixed electrolyte for high power density and heat-to-electricity conversion efficiency low-grade heat harvesting system[J]. Materials Today Nano, 2022, 18: 100206.
7.Huo D, Tian H*, Wang W*, et al. Effect of electrolytes on performance of CuHCF electrode of thermally regenerative electrochemical cycle system for harvesting low-grade heat[J]. Energy Conversion and Management, 2022, 255: 115306.
8.Huo D, Tian H*, Shu G*, Wang W. Progress and prospects for low-grade heat recovery electrochemical technologies[J]. Sustainable Energy Technologies and Assessments, 2022, 49: 101802.
9.Wang W, Tian H*, Huo D, et al. Modelling of a bimetallic thermally-regenerative ammonia flow battery for conversion efficiency and performance evaluation[J]. Journal of Power Sources, 2021, 499: 229943.
10.Wang W#, Yang S#, Huo D#, et al. Understanding the reaction mechanism and self-discharge of a bimetallic thermally-regenerative ammonia battery[J]. Electrochimica Acta, 2021, 370: 137724.
11.Wang W, Huo D, Tian H*, et al. Temperature characteristics of a copper/zinc thermally-regenerative ammonia battery[J]. Electrochimica Acta, 2020, 357: 136860.
12.Wang W, Shu G, Zhu X, et al. Decoupled electrolytes towards enhanced energy and high temperature performance of thermally regenerative ammonia batteries[J]. Journal of Materials Chemistry A, 2020, 8(25): 12351-12360. (内封面文章)
13.Wang W, Shu G*, Tian H*, et al. Removals of Cu (II), Ni (II), Co (II) and Ag (I) from wastewater and electricity generation by bimetallic thermally regenerative electro-deposition batteries[J]. Separation and Purification Technology, 2020, 235: 116230.
14.Wang W, Shu G*, Tian H*, et al. A bimetallic thermally-regenerative ammonia-based flow battery for low-grade waste heat recovery[J]. Journal of Power Sources, 2019, 424: 184-192.
15.Wang W#, Tian H#, Shu G*, et al. A bimetallic thermally regenerative ammonia-based battery for high power density and efficiently harvesting low-grade thermal energy[J]. Journal of Materials Chemistry A, 2019, 7(11): 5991-6000. (封底文章)
16.Tian H, Jiang W, Shu G*, et al. Analysis and optimization of thermally-regenerative ammonia-based flow battery based on a 3-d model[J]. Journal of The Electrochemical Society, 2019, 166(13): A2814.
17.Wang W, Shu G*, Tian H*, et al. A numerical model for a thermally-regenerative ammonia-based flow battery using for low grade waste heat recovery[J]. Journal of Power Sources, 2018, 388: 32-44.
18.Tian H, Wang W G, Shu G Q, et al. Effect of Operating Parameters on Thermal Behaviors of Lithium-Ion Battery Pack[R]. SAE Technical Paper, 2016.
19.田华, 王伟光, 舒歌群*, 等. 基于多尺度, 电化学-热耦合模型的锂离子电池生热特性分析[J]. 天津大学学报: 自然科学与工程技术版, 2016, 49(7): 734-741.
|
|