• 赵力

    职称:英才教授 博士生导师

    邮箱:jons@tju.edu.cn

    专业:热能工程

    办公地址:机械学院34楼

个人简介 教育教学 科学研究

【概况】

【教育背景】

1991.9-1995.6:河北煤炭建筑工程学院热能与环境工程系供热通风与空调专业,大学本科 1995.9-1998.1:天津大学电气自动化与能源工程学院工程热物理专业,获硕士学位 1998.3-2001.2:天津大学建筑工程学院建筑技术科学专业,获博士学位

【学术经历】

2001.3-2003.4:上海交通大学制冷与低温工程研究所动力工程及工程热物理博士后流动站,博士后 2003.4-2008.7:天津大学机械工程学院热能与制冷工程系,副教授(2003.5) 2008.7-2009.8:天津大学机械工程学院热能与制冷工程系,教授(2008.7),博士生导师(2008.12) 2009.8-2010.2:美国劳伦斯伯克利国家实验室,访问学者 2010.2至今:天津大学机械工程学院热能与制冷工程系,教授

【讲授课程】

1. 动力装置设计与优化 (本科生) 2. 能源管理与规范 (本科生)

【教学成果】

【研究方向】

1. 太阳能高效热利用的相关技术研究 2. 新型制冷剂的循环性能研究 3. 制冷热泵系统的优化、仿真及控制 4. 新型节能技术研究

【学术兼职】

天津市可再生能源学会常务秘书

【科研项目及成果】

主要科研项目: 1. 国家科技部863探索类项目(2006AA05Z420),新型太阳能低温高效热电循环研究。 2. 国家教育部新世纪优秀人才支持计划项目,水平管中非共沸工质蒸发传热窄点的确定与迁移。 3. 国家自然科学基金面上项目(50876071),高温热泵工况下自然工质混合物两类相变传热窄点的研究。 4. 天津市国际合作专项(10ZCGHHZ00800),聚焦式太阳能高效复合转换技术研究。 5. 国家科技部863项目(2012AA051103),200kW级有机朗肯循环太阳能热发电技术。 6. 国家自然科学基金面上项目(51276123),混合工质组分可调型有机朗肯循环关键科学问题研究。 7. 天津市科技支撑重大项目(11ZCZDGX19800),聚焦太阳能分布式复合供能系统研究与示范。 8. 国家自然科学基金面上项目(51476110),非共沸工质冷凝过程中的气液分离及气相膨胀压缩特性研究 主要学术成就: 完成国家级、省部级及横向课题10余项,发表论文近60篇,SCI收录16篇,EI收录40余篇,出版书籍1部,获得国家发明专利6项,实用新型专利3项。2007年入选教育部新世纪优秀人才支持计划。

【代表性论著】

1. Zhao L., Theoretical and Basic Experimental Analysis on Load Adjustment of Geothermal Heat Pump Systems. Energy Conversion and Management. 2003, 44(1): 1-9. 2. Zhao L., Affection of Two Systematic Parameters on the Geothermal Heat Pump System Operation. Renewable Energy. 2003, 28(1): 35-43. 3. Zhao L., Experimental Evaluation of a Non-azeotropic Working Fluid for Geothermal Heat Pump System. Energy Conversion and Management. 2004, 45(9): 1369-1378. 4. Zhao Li, Gao Pan. Influence of Zeotropic Mixtures' Temperature Gliding on the Performance of Heat Transfer in Condenser or Evaporator. Transactions of Tianjin university. 2005, 11(6): 400-406. 5. Pan Gao, Li Zhao. Investigation on Incomplete Condensation of Non-azeotropic Working Fluids in High Temperature Heat Pumps. Energy Conversion and Management. 2006, 47(13-14): 1884-1893. 6. Zhao Li, Gao Pan. Evaluation of zeotropic refrigerants based on nonlinear relationship between temperature and enthalpy. Science in China Series E. 2006, 49(3): 322-331. 7. P. Gao, L. Zhao. Theoretical and experimental investigation on components' proportion of zeotropic mixtures based on relation between temperature and enthalpy during phase change. Energy conversion and management. 2008, 49(6): 1567-1573. 8. X.D. Wang, L. Zhao. Analysis of zeotropic mixtures used in low-temperature solar Rankine cycles for power generation. Solar energy. 2009, 83(5): 605-613. 9. X.D. Wang, L. Zhao, J.L. Wang, W.Z. Zhang, X.Z. Zhao, W. Wu. Performance evaluation of a low-temperature solar Rankine cycle system utilizing R245fa. Solar energy, 2010, 84(3): 353-364. 10. J.L. Wang, L. Zhao, X.D. Wang. A comparative study of pure and zeotropic mixtures in low-temperature solar Rankine cycle. Applied energy, 2010, 87(11): 3366-3373. 11. Wang XD, Zhao L, Wang JL. Experimental investigation on the low-temperature solar Rankine cycle system using R245fa. ENERGY CONVERSION AND MANAGEMENT. 2011, 52(2): 946-952. 12. J.J. Bao, L. Zhao, W.Z. Zhang. A novel auto-cascade low-temperature solar Rankine cycle system for power generation. Solar Energy. 2011, 85(11): 2710-2719. 13. W. Wu, L. Zhao, T. Hob. Experimental investigation on pinch points and maximum temperature differences in a horizontal tube-in-tube evaporator using zeotropic refrigerants. ENERGY CONVERSION AND MANAGEMENT. 2012(56): 22-31. 14. J.L. Wang, L.Zhao, X.D. Wang. An experimental study on the recuperative low temperature solar Rankine cycle using. APPLIED ENERGY. 2012(94):34-40. 15. Z.Y. Liu, L. Zhao, X.Z. Zhao, H.L. Li. The occurrence of pinch point and its effects on the performance of high temperature heat pump. Applied energy. 2012(97): 869-875. 16. J.J. Bao, L. Zhao. Exergy analysis and parameter study on a novel auto-cascade Rankine cycle, Energy, 2012. 48(1):548-565. 17. N. Zheng, W.D. Song, L. Zhao. Theoretical and experimental investigations on the changing regularity of the extreme point of the temperature difference between zeotropic mixtures and heat transfer fluid, energy, 2013. 55(15):541-552. 18. J.J. Bao, L. Zhao. A review of working fluid and expander selections for organic Rankine cycle, Renewable and Sustainable Energy Reviews, 2013. 24(8):325-342. 19. N. Zheng, L. Zhao, X.D. Wang, Y.T. Tan. Experimental verification of a rolling-piston expander that applied for low-temperature Organic Rankine cycle, applied energy, 2013. 112(12):1265-1274. 20.L. Zhao, J.J. Bao. The influence of composition shift on organic Rankine cycle (ORC) with zeotropic mixtures, energy conversion and management, 2014. 83(7):203-211. 21.Y.T. Tan, L. Zhao, J.J. Bao, Q. Liu. Experimental investigation on heat loss of semi-spherical cavity receiver, Energy conversion and management, 2014. 87(11):576-583. 22.L. Zhao, R.K. Zhao, S. Deng, Y.T. Tan, Y.N. Liu. Integrating solar Organic Rankine Cycle into a coal-?red power plant with amine-based chemical absorption for CO2 capture, International Journal of Greenhouse Gas Control, 2014. 31(10):77-86. 23.L. Zhao, J.J. Bao. Thermodynamic analysis of organic Rankine cycle using zeotropic mixtures, applied energy, 2014. 130(10):748-756. 24. L. Zhao, N. Zheng, S. Deng. A thermodynamic analysis of an auto-cascade heat pump cycle for heating application in cold regions, Energy and Buildings, 2014. 82(10):621-631.