职称:副教授 博士生导师
邮箱:jianbin_liu@tju.edu.cn
专业:机械设计制造及其自动化
办公地址:天津市津南区天津大学北洋园校区37楼421
【概况】
刘建彬,河北迁安人,天津大学机械工程学院副教授,博士生导师。入选第4届中国科协青年人才托举工程、天津市青年人才托举工程。长期从事流体驱动与传动技术研究,聚焦流体驱动器创新设计和流体传动控制技术,提出了扁平气动人工肌肉驱动架构和多种仿生驱动器设计,提出的人工肌肉助力控制方法大幅提高可穿戴柔性助力系统助力效率。发明了液压-机械双反馈原理和减振尾抵消液流液动力的方法,并在徐工集团、中联重科汽车起重机上获得产业应用。担任中国机械工程学会流体传动与控制分会特种流控专业副秘书长、《机械工程学报》青年编委等学术兼职。以一作或通讯作者在IEEE Transactions on Mechatronics、Advanced Intelligent Systems、IEEE Robotics and Automation Letters等行业权威期刊发表SCI检索论文30余篇,授权发明专利20余项,承担国家自然科学基金面上和青年项目、博士后特别资助和面上资助项目等国家级科研项目6项,承担国家重点实验室开放课题及企业合作项目10余项。研究成果获中国机械工业科学技术一等奖、山东省机械工业科学技术一等奖、日内瓦国际发明展金奖、上银优秀机械博士论文银奖、浙江省优秀博士论文奖、IRCE2019国际会议最佳口头报告奖、2023机械设计年会最佳论文奖、2023年度战场联合搜救学术研讨优秀论文奖、Smart Materials and Structures期刊2023年度亮点论文奖等。课题组常年招收博士后、博士、硕士研究生,从事包括但不限于上述方向研究工作,有兴趣可联系本人邮箱。
【教育背景】
2012-2017:浙江大学机械电子工程,获工学博士学位 2008-2012:浙江大学机械电子工程,获工学学士学位
【学术经历】
2021-至今:天津大学,机械工程学院,副教授 2018-2021:天津大学,机械工程学院,讲师
【讲授课程】
1.《工程图学》 2. 《测试与控制技术基础3》 3. 《设计与建造I》 4. 《设计与建造II》 5. 《机械工程发展史》 6. 《先进制造技术》研究生课程
【教学成果】
参与建设《工程图学》国家级精品课程,参与新工科系列教学改革和《设计与建造》系列课程建设,参与编写《机械制图(第4版)》教材编写。牵头教育部产学合作协同育人项目1项,参与校级、市级教改项目多项。 指导本科生获得全国大学生机械创新设计大赛一等奖,天津市级本科生优秀毕业设计(论文),“新工科”本科生毕业设计大赛一等奖、三等奖,“高教杯”全国大学生先进成图技术与产品信息建模创新大赛机械类团体二等奖等。指导硕博研究生团队获第七届(2024)中国医疗器械创新创业大赛优胜奖、天津市优秀硕士论文奖等。
【研究方向】
1. 仿生柔性驱动器和软体机器人 2. 流体传动控制与静压支撑技术
【学术兼职】
中国机械工程学会流体传动与控制分会特种流控专业委员会副秘书长 天津市青年科技工作者协会材料与机械工程学科专业委员会秘书 2024、2025年全国大学生先进成图技术与产品信息建模创新大赛天津赛区组委会秘书 《机械工程学报》青年编委 十二届全国流体传动与控制学术会议组委会委员 《液压与气动》“特种流控”专刊客座副主编 IRCE2022国际会议程序主席 中国科技发展基金会“青年科学家产学研创新联合体”智库专家 国际期刊《IEEE Transactions on Robotics》《IEEE Transactions on Mechatronics》《Mechanism and Machine Theory》、《Advanced Intelligent Systems》、《Smart Materials and Structures》、《Bioinspiration & Biomimetics》、《Robotica》等审稿人
【科研项目及成果】
科研获奖: 2024:山东省机械工业科学技术一等奖、天津市青年科技工作者协会2024年度优秀青年科技工作者 2023:机械设计国际会议暨第22届机械设计年会最佳会议论文奖、战场联合搜救学术研讨优秀论文奖、Smart Materials and Structures期刊2023年度亮点论文奖 2022:第二届“新工科”本科生毕业设计大赛一等奖和三等奖指导教师、第十三届天津市级本科优秀毕业设计指导教师、2022年天津大学本科毕业设计优秀指导教师 2020:第九届全国大学生机械创新设计大赛一等奖指导教师、天津大学本科毕业设计优秀指导教师 2019:中国机械工业科学技术一等奖、IRCE国际会议最佳口头报告、浙江省优秀博士学位论文 2018:第八届上银优秀机械博士论文银奖 2017:第45届日内瓦国际发明展金奖 科研项目: 1. 驱动、控制、传感一体化编织型气动人工肌肉基础理论与关键技术研究,国家自然科学基金面上项目 2. 基于柔性增材制造的新型模块化气动人工肌肉结构设计优化与反馈控制方法研究,国家自然科学基金青年项目 3. 面向软体机器人的流体驱动与控制方法研究及关键元件研制,中国科协青年人才托举工程项目 4. 基于液态金属的新型气动人工肌肉输出力精准测量方法,中国博士后科学基金面上项目 5. 级间液压-机械双反馈原理大流量负载控制阀适应性设计及系统匹配研究,流体动力基础件与机电系统全国重点实验室开放课题
【代表性论著】
SCI检索论文: [1] Ma Z, Wang Y, Zhang T, Liu J*. Reconfigurable Exomuscle System Employing Parameter Tuning to Assist Hip Flexion or Ankle Plantarflexion[J]. IEEE/ASME Transactions on Mechatronics, 2025. [2] Liu J*, Li P, Huang Z, Liu H, Huang T. Earthworm-inspired multimodal pneumatic continuous soft robot enhanced by winding transmission[J]. Cyborg and Bionic Systems, 2025, 6: 0204. [3] Liu J, Ma G, Zhang T, Shan X, Kang R*, Zheng R, Liu H. Untethered Soft Crawling Robot Based on Origami Inspired Soft-rigid Hybrid Actuator[J]. Journal of Bionic Engineering, 2025: 1-14. [4] Ma Z, Wang Y, Zheng R, Liu H, Liu J*. A modified Prandtl–Ishlinskii hysteresis model with dead-zone operators for a novel pouch-type actuator[J]. Robotica, 2025: 1-17. [5] Li J, Liu R, Zhang T, Liu J*. A Symmetrical Leech-Inspired Soft Crawling Robot Based on Gesture Control[J]. Biomimetics, 2025, 10(1): 35. [6] Ma Z, Liu J*, Liu H, Huang T. Design of Linear Pneumatic Artificial Muscles Guided by Biomechanics of Human Skeletal Muscle for Wearable Application: A Review[J]. Bio-Design and Manufacturing, 2025, Accept. [7] Wang Y, Liu C*, Liu J, et al. A Laser-Based SLAM Algorithm of the Unmanned Surface Vehicle for Accurate Localization and Mapping in an Inland Waterway Scenario[J]. Journal of Marine Science and Engineering, 2024, 12(12): 2311. [8] Yuan P, Liu J, Branson D T, Song Z, Wu S, Dai J, Kang R*. Design and control of a compliant robotic actuator with parallel spring-dam transmission[J]. Robotica, 2024: 1-21. [9] Li P, Chen B, Liu J*. Multimodal Steerable Earthworm-inspired Soft Robot Based on Vacuum and Positive Pressure Powered Pneumatic Actuators. Bioinspiration & Biomimetics, 2024,19(1): 016001. [10] Wang Y, Ma Z, Zuo S, Liu J*. A novel wearable pouch-type pneumatic artificial muscle with contraction and force sensing[J]. Sensors and Actuators A: Physical, 2023, 359: 114506. [11] Liu J, Ma G, Ma Z, Zuo S*. Origami-inspired soft-rigid hybrid contraction actuator and its application in pipe-crawling robot [J]. Smart Materials and Structures, 2023, 32(6): 065015. [12] Xie D, Su Y, Chen J, Shi X, Liang D, Yip J, Liu J*, Li Z*, Tong R*. Fluid-driven High Performance Bionic Artificial Muscle with Adjustable Muscle Architecture[J]. Advanced Intelligent Systems, 2023, 2200370. [13] Liu J*, Li P, Zuo S. Actuation and design innovations in earthworm-inspired soft robots: A review[J]. Frontiers in Bioengineering and Biotechnology, 2023, 11: 1088105. (JCR Q1, IF6.064) [14] Ma Z, Zhang H, Zuo S, Liu J*. Design and Verification of Lockable Upper-Limb Exoskeleton Based on Jamming and Engagement Mechanisms[J]. IEEE Robotics and Automation Letters, 2023,8(3): 1359-1366. [15] Ma Z, Liu J*, Ma G, et al. Lockable Lower Limb Exoskeleton Based on a Novel Variable-Stiffness Joint: Reducing Physical Fatigue at Squatting[J]. Journal of Mechanisms and Robotics. [16] Liu J, Ma Z, Wang Y, et al. Reconfigurable Self-Sensing Pneumatic Artificial Muscle With Locking Ability Based on Modular Multi-Chamber Soft Actuator[J]. IEEE Robotics and Automation Letters, 2022, 7(4): 8635-8642. [17] Liu J, Chen Z, Wang S, et al. Novel shape-lockable self-propelling robot with a helical mechanism and tactile sensing for inspecting the large intestine[J]. Smart Materials and Structures, 2021, 30(12): 125023. [18] Ma G, Zuo S, Liu J*. Design of low-cost endoscope based on a novel wire driven rotary valve and water-jet mechanism[J]. Journal of Medical Devices, 2021,15(4). [19] Xie D, Liu J*, Zuo S*. Pneumatic Artificial Muscle with Large Stroke Based on a Contraction Ratio Amplification Mechanism and Self-Contained Sensing[J]. IEEE Robotics and Automation Letters, 2021,6(4): 8599-8606. [20] Ma Z, Zuo S, Chen B, Liu J*. Friction prediction and validation of a variable stiffness lower limb exosuit based on finite element analysis[J]. Actuators, 2021,10(7): 151. [21] Xie D, Ma Z, Liu J*, Zuo S. Pneumatic Artificial Muscle Based on Novel Winding Method[J]. Actuators 2021, 10, 100. [22] Xie D, Liu J*, Kang R, Zuo S*. Fully 3D-Printed Modular Pipe-Climbing Robot[J]. IEEE Robotics and Automation Letters, 2021,6(2): 462-469. [23] Liu J, Yin L, Chandler JH, Chen X, Valdastri P, Zuo S*. A dual-bending endoscope with shape-lockable hydraulic actuation and water-jet propulsion for gastrointestinal tract screening[J]. INTERNATIONAL JOURNAL OF MEDICAL ROBOTICS AND COMPUTER ASSISTED SURGERY, 2021,17(1). [24] Xie D, Zuo S*, Liu J*. A Novel Flat Modular Pneumatic Artificial Muscle[J]. Smart Materials and Structures, 2020, 29: 065013. [25] Liu J, Wei J, Zhang G, et al. Pneumatic Soft Arm Based on Spiral Balloon Weaving and Shape Memory Polymer Backbone[J]. Journal of Mechanical Design, 2019, 141(8): 082302. [26] Liu J*, Xie H, Yang H. Static and dynamic performance improvement of a hydraulic feedback valve for load control by introducing force feedback and compensation orifice[J]. Proceedings of the Institution of Mechanical Engineers, Part C: Journal of Mechanical Engineering Science, 2019, 233(11): 3837-3848. [27] Ping Z, Zhang T, Zhang C, Liu J, Zuo S*. Design of Contact-aided Compliant Flexure Hinge Mechanism Using Superelastic Nitinol[J]. Journal of Mechanical Design, 2021: 1-19. [28] Chen Z, Liu J, Wang S, Zuo S*. A bio-inspired self-propelling endoscopic device for inspecting the large intestine[J]. Bioinspiration & Biomimetics, 2019, 14(6). [29] Liu J, Xie H*, Hu L, et al. Realization of direct flow control with load pressure compensation on a load control valve applied in overrunning load hydraulic systems[J]. Flow Measurement and Instrumentation, 2017,53, Part B:261-268. [30] Liu J, Xie H*, Hu L, et al. Flow force regulation of the main poppet in a large flow load control valve[J]. Proceedings of the Institution of Mechanical Engineers, Part A: Journal of Power and Energy, 2017, 231(8): 706-720. Proc IMechA: Journal of Power and Energy. [31] Xie H, Liu J, Yang H, et al. Design of pilot-assisted load control valve with load velocity control ability and fast opening feature[J]. ADVANCES IN MECHANICAL ENGINEERING, 2015,7(11): 1-9. [32] Xie H, Liu J, Hu L, et al. Design of pilot-assisted load control valve for proportional flow control and fast opening performance based on dynamics modeling[J]. Sensors and Actuators A: Physical, 2015,235:95-104. [33] Xie H, Tan L, Liu J, et al. Numerical and Experimental Investigation on Opening Direction Steady Axial Flow Force Compensation of Converged Flow Cartridge Proportional Valve[J]. Flow Measurement and Instrumentation, 2018, 62: 123-134. EI检索论文: [1] Ma Z, Zhang T, Zheng R, Liu H, Liu J*. A PSO-LSTM Model to Predict Hip Flexion for Wearable Pneumatic Artificial Muscle Assisting Time Control[C]//IFToMM China International Conference on Mechanism and Machine Science & Engineering. Springer, Singapore, 2025: 623-636. [2] He Y, Lv X, Wang Y, Wang X, Zheng R, Liu J*. Estimating Body Segment Inertia Parameters of Human Forearm Based on Dynamic Modeling and Recursive Least Squares Parameter Identification Method[C]//IFToMM China International Conference on Mechanism and Machine Science & Engineering. Singapore: Springer Nature Singapore, 2025: 385-397. [3] Zhang Y, Ma Z, Zuo S, Liu J*. Gait Prediction and Assist Control of Lower Limb Exoskeleton Based on Inertia Measurement Unit[C]// 2022 5th International Conference of Intelligent Robotic and Control Engineering (IRCE), Tianjin, China, 2022. [4] Lou B, Zuo S, Liu J*. Bio-inspired vacuum driven soft robot for esophageal obstruction removal [C]// 2022 5th International Conference of Intelligent Robotic and Control Engineering (IRCE), Tianjin, China, 2022. [5] Wang Y, Gao J, Ma Z, Li Y, Zuo S, Liu J*. Design and Verification of an Active Lower Limb Exoskeleton for Micro-low Gravity Simulation Training[C]//International Conference on Intelligent Robotics and Applications. Springer, Cham, 2022: 114-123. [6] Wang X, Gong H, Liu J*. Design and simulation of a vibration isolation platform based on air spring for road transportation applications[C]//2nd International Conference on Internet of Things and Smart City (IoTSC 2022). SPIE, 2022, 12249: 796-800. [7] Ren W, Ma Z, Zuo S, Liu J*. Novel pneumatic artificial muscle based on film thermoforming and wire weaving[C]//2021 27th International Conference on Mechatronics and Machine Vision in Practice (M2VIP). IEEE, 2021: 656-660. [8] Ma Z, Chen B, Liu J*, Zuo S. A Performance Evaluating Platform for Variable Stiffness Exoskeleton Joint[C]//International Conference on Intelligent Robotics and Applications. Springer, Cham, 2021: 709-716. [9] Gao J, Zhang Y, Liu J*. A novel human lower limb simulation test system for gravity-counteracting exoskeletons[C]//2021 4th International Conference on Intelligent Robotics and Control Engineering (IRCE). IEEE, 2021: 16-19. [10] Liu J*, Zuo S, Wang L, Zhang Y. Simulation Investigation of a Soft Hydraulic Artificial Muscle[J]. Journal of Physics: Conference Series, 2021, 1820(1): 12068. [11] Xie D, Liu J*, Zuo S. Pneumatic Flexible Exoskeleton with Variable Stiffness Based on Wire Driving and Clamping[C]// 2019 IEEE 9th Annual International Conference on CYBER Technology in Automation, Control, and Intelligent Systems (CYBER). IEEE, 2019. [12] Liu J, Xie H, Yang H. Flow control performance investigation of a load control valve using modelling method directly based on irregular shaped groove parameters. 2019 2nd International Conference of Intelligent Robotic and Control Engineering (IRCE), Singapore, Singapore, 2019, pp. 85-90, doi: 10.1109/IRCE.2019.00024. [13] Liu J, Xie H. Research on Characteristics and Key Design Parameters of a Pilot-Assisted Load Control Valve[J]. Applied Mechanics and Materials, 2014,541:1203-1210. [14] Xie H, Tan L, Liu J, et al. Research on Influence of Different Types of Orifice on Axial Steady-state Flow Force in Cartridge Proportional Valve[J]. INTERNATIONAL JOURNAL OF FLUID POWER, 2019,20(2): 151-176. 授权发明专利: [1] 一种基于柔性异形管编织方式的自传感气动人工肌肉.专利号: 202111121210.2. [2] 一种双作用直线柔性气动驱动器及其制备和使用方法.专利号: 202111200125.5. [3] 地表失重训练下肢主动外骨骼.专利号:202011058399.0. [4] 基于正压阻塞和间歇啮合机构的二自由度上肢姿态保持外骨骼. 专利号:202111318410.7. [5] 一种抵消重力下肢外骨骼的测试系统与测试方法.专利号:202011247971.8. [6] 基于收缩率放大机构的自传感袋式气动人工肌肉.专利号:202010973383.6. [7] 一种具有接触力感知能力的螺旋推进式肠道内窥镜装置.专利号:202010919562.1. [8] 一种基于正压摩擦原理的变刚度外骨骼结构.专利号:202010397063.0. [9] 平面模块化气动人工肌肉. 专利号:2019103695359. [10] 基于气囊弯折原理的全柔性驱动助力缓冲外骨骼. 专利号:201811402559.1. [11] 一种液压驱动柔性人工肌肉. 专利号:201910048117X. [12] 基于线驱动和气动夹持原理的可变刚度柔性外骨骼. 专利号:201811071158.2. [13] 基于长距离丝传动原理的旋转开合微型阀.专利号:201910289795.5. [14] 应用位移-力反馈原理的先导大流量负载控制阀. 专利号:201310564977.1. [15] 分体式先导负载控制阀. 专利号:201310749304.3. [16] 先导式负载控制阀的试验系统. 专利号:201410010744.1. [17] 将溢流功能集成于先导阀芯的二级负载控制阀. 专利号:201410611180.7. [18] 将溢流功能集成于主阀芯的直动式负载控制阀. 专利号:201510207823.6. [19] 一种先导式负载控制阀的阀芯动态测试系统. 专利号:201610331364.7. [20] 用于单边滑阀阀芯反向液动力消除的减振尾结构. 专利号:201610645458.1. [21] 一种大流量负载控制阀的阀芯液动力测试系统与测试方法. 专利号:201610329589.9. [22] 再制造油缸性能检测平台. 专利号:201510150840.0. [23] 一种用于插装阀阀芯液动力消除的平衡坠结构. 专利号:201710071344.5.