职称:副研究员 硕士生导师
邮箱:xiehaimei@tju.edu.cn
专业:固体力学
办公地址:天津市津南区天津大学北洋园校区力学大楼(36 教学楼)321办公室
【概况】
谢海妹,四川资阳人,天津大学机械工程学院力学系副研究员,硕士生导师,于2012年和2020年分别获得天津大学工程力学学士和固体力学博士学位。主要研究方向是储能材料力-电化学耦合、性能调控优化与寿命预测以及深海腐蚀力学相关研究,主要研究方法包括多场耦合实验测量、多尺度有限元仿真以及AI。讲授课程为弹性力学。在Journal of the Mechanics and Physics of Solids、Experimental Mechanics、Journal of Power Sources、Carbon等多学科国内外权威期刊上发表论文30余篇(封面论文2篇),授权中国发明专利5项。主持国家自然科学基金项目2项、中国博士后基金项目2项,作为骨干参与国家自然科学基金重大/重点项目多项。获天津市技术发明一等奖(排名第 3)、中国力学学会优博论文、天津市优博论文等。
【教育背景】
2012年9月 至 2020年1月 天津大学 力学系 固体力学专业(博士) 导师:亢一澜教授 2008年9月 至 2012年6月 天津大学 力学系 工程力学专业(学士)
【学术经历】
2023年5月 至 今 天津大学机械学院力学系 副研究员 2020年7月 至 2023年5月 天津大学机械学院力学系 博士后
【讲授课程】
1. 弹性力学;
【教学成果】
【研究方向】
1.实验固体力学 2.储能材料力-电化学耦合、调控、优化与预测 3.深海腐蚀力学
【学术兼职】
【科研项目及成果】
1.2025-2028 电化学储锂机制及力学调控的多光谱原位实验, 国家自然科学基金面上项目52.39万 2.2022-2024 扩散过程中电化学应力(场)演化与耦合问题的实验研究,国家自然科学基金青年项目 30万 3.2022-2023 储能材料力-电化学性能演化原位测量与实验分析,中国博士后科学基金特别资助项目 18万 4.2021-2023 电极多尺度力学原位测量与跨尺度实验分析,中国博士后科学基金面上项目 8万 5.2024-2024 电极微结构动力学演化多光谱测量与力学调控机制,天津大学自主创新基金 8万 6.2022-2022 电极跨尺度力学演化原位测量与实验分析,天津大学自主创新基金 10万 7.2021-2021 电极多尺度应力/应变演化的原位测量与跨尺度性能分析,天津大学自主创新基金 10万 8.2023-2023 预腐蚀铝合金疲劳性能测试,横向 6万
【代表性论著】
[1] Xie H, Han B, Song H, et al. In-situ measurements of electrochemical stress/strain fields and stress analysis during an electrochemical process [J]. Journal of the Mechanics and Physics of Solids, 2021, 156: 104602. [2] Xie H M, Yang W, Kang Y L, et al. In-situ Strain Field Measurement and Mechano-electro-chemical Analysis of Graphite Electrodes Via Fluorescence Digital Image Correlation [J]. Experimental Mechanics, 2021, 61(8): 1249-1260. [3] Xie H, Song H, Guo J-G, et al. In situ measurement of rate-dependent strain/stress evolution and mechanism exploration in graphene electrodes during electrochemical process [J]. Carbon, 2019, 144: 342-350. [4] Xie H, Zhang Q, Song H, et al. Modeling and in situ characterization of lithiation-induced stress in electrodes during the coupled mechano-electro-chemical process [J]. Journal of Power Sources, 2017, 342: 896-903. [5] Han B, Guo J, Hong C, et al. Three-dimensional microstructural deformation and lithium storage mechanisms of graphite electrodes during electrochemical processes [J]. Carbon, 2025, 234: 120031. [6] Song H, Na R, Hong C, et al. In situ measurement and mechanism analysis of the lithium storage behavior of graphene electrodes [J]. Carbon, 2022, 188: 146-154. [7] Du H Z, Kang Y L, Xu C C, et al. Measurement and characterization of interfacial mechanical properties of graphene/MoS2 heterostructure by Raman and photoluminescence (PL) spectroscopy [J]. Optics and Lasers in Engineering, 2022, 149: 106825. [8] Xie H M, Kang Y L, Song H B, et al. Real-time measurements and experimental analysis of material softening and total stresses of Si-composite electrode [J]. Journal of Power Sources, 2019, 424: 100-107. [9] Xie H, Song H, Kang Y, et al. In Situ Experimental Measurement of the Mechanical Properties of Carbon-Based Electrodes during the Electrochemical Process [J]. Journal of the Electrochemical Society, 2018, 165(10): A2069-A2074. [10] Xie H, Qiu W, Song H, et al. In Situ Measurement of the Deformation and Elastic Modulus Evolution in Si Composite Electrodes during Electrochemical Lithiation and Delithiation [J]. Journal of the Electrochemical Society, 2016, 163(13): A2685-A2690. [11] Xie H, Kang Y, Song H, et al. Modified Stoney Model and Optimization of Electrode Structure Based on Stress Characteristics [J]. Energy Technology, 2019, 7(2): 333-345. [12] Xie H M, Guo J G, Song H B, et al. Active Tensile/Compressive Stress-Regulated Electrochemical Behavior and Mechanism in Electrodes [J]. Energy Technology, 2018, 6(9): 1788-1796. [13] Xie H, Kang Y, Song H, et al. In situ method for stress measurements in film-substrate electrodes during electrochemical processes: key role of softening and stiffening [J]. Acta Mechanica Sinica, 2020, 36: 1319–1335. [14] Liu Z, Kang Y, Song H, et al. Experimental investigation of electrode cycle performance and electrochemical kinetics performance under stress loading [J]. Chinese Physics B, 2021, 30(1): 016201. [15] Zhang G, Xie H-M, Song H-B, et al. Experimental analysis of influence of different charge-discharge modes on lithium storage performance of reduced graphene oxide electrodes [J]. Acta Physica Sinica, 2022, 71(6): 066501. [16] Han B, Shi B, Xie H, et al. Evolution of electrochemically induced stress and its effect on the lithium-storage performance of graphite electrode [J]. Science China Technological Sciences, 2023, 66(6): 1784-1796. [17] Hong C, Song H, Kang Y, et al. Synchronous Raman Spectroscopy Method for Measuring Strain-Charge Information of Graphene Materials [J]. Experimental Mechanics, 2023, 63(7): 1193-1202. [18] Song H, Xie H, Zhang Z, et al. Prediction Model of Capacity Degradation in Lithium-Ion Batteries Based on Fatigue Damage Theory and Electrochemical Impedance Spectroscopy [J]. Acta Mechanica Solida Sinica, 2025. [19] Li R, Wang M, Xing H, et al. Experimental Study on Strain Transfer Behavior of Graphene and Black Phosphorus Heterostructure on Flexible Substrate [J]. Acta Mechanica Solida Sinica, 2025. [20] 亢一澜, 秦梦斐, 谢海妹, et al. 深海环境下金属点蚀进程及诱导应力演化 [J]. 天津大学学报(自然科学与工程技术版), 2024, 57(7): 741-750. [21] 谢海妹, 宋海滨, 韩彬, et al. 脱嵌锂循环过程中硅纳米材料变形原位测量与机理分析 [J]. 实验力学, 2024, 39(5): 612-624. [22] Wei Q, Ying C, Yilan K, et al. Research progress in methods and applications of experimental mechanics using micro-Raman spectroscopy [J]. 力学进展, 2023, 53(4): 740-773. [23] Xie H, Kang Y, Zhang Q, et al. In situ experimental measurement of softening of material modulus and stresses evolution of Si-composite electrodes during the electrochemical process [J]. Strength, Fracture and Complexity, 2020, 12(2-4): 135-141.