2015-06-03
u 会议时间:6月5日(周五) 下午3:00–4:30
u 会议地点:会议楼第七会议室
报告人简介:
刘海涛,副教授
天津大学
洪堡奖学金获得者
刘海涛,男,1981年生,天津大学副教授。2000年至2010年于天津大学获得学士、硕士、博士学位,2012年至2014年于德国Duisburg-Essen大学从事博士后研究工作,主要研究方向为机构学与机器人学。主持国家科技重大专项子课题1项、国家自然科学基金青年基金1项,参加国家自然科学基金国际(地区)合作与交流项目1项、国家自然科学基金面上项目2项;获得2013年中国机械工业科学技术一等奖、2012年德国亚历山大-冯-洪堡奖学金、2012年全国优秀博士学位论文提名、2012年天津市优秀博士学位论文奖、2011年上银优秀机械博士论文奖铜奖。
报告摘要:
Screw theory is the algebra and calculus of pairs of vectors, such as forces and moments and angular and linear velocity that arise in the kinematics and dynamics of rigid bodies. The mathematical framework was developed by Sir Robert Stawell Ball in 1876 for application in kinematics and statics of mechanisms. It provides a mathematical formulation for the geometry of lines which is central to rigid body dynamics, where lines form the screw axes of spatial movement and the lines of action of forces. The pair of vectors that form the Plücker coordinates of a line define a unit screw, and general screws are obtained by multiplication by a pair of real numbers and addition of vectors. An important result of screw theory is that geometric calculations for points using vectors have parallel geometric calculations for lines obtained by replacing vectors with screws.
Screw theory has become an important tool in robot mechanics, mechanical design, computational geometry and multi-body dynamics. This is in part because of the relationship between screws and dual quaternions which have been used to interpolate rigid-body motions. Based on screw theory, various efficient approaches have been developed for the type synthesis, kinematic and kinetostatic analyses, and error and dynamic modelling in the field of robotics.